Diamond formation beneath the Sask Craton – Insights from diamondiferous microxenoliths

JANINA CZAS1*, THOMAS STACHEL1, D. GRAHAM PEARSON1, RICHARD A. STERN1 AND GEORGE H. READ2

1 Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada *jczas@ualberta.ca
2 Shore Gold Inc., Saskatoon, SK, Canada

The “Sask Craton” is a terrane with Archean crustal ages enclosed in the Paleoproterozoic (~1.8 Ga) Trans Hudson Orogen. In the absence of Archean lithospheric mantle beneath the Sask Craton, the diamondiferous kimberlites at Fort à la Corne (FALC) represent unconventional diamond deposits. Here we study diamondiferous microxenoliths from FALC (eclogitic n=23; lherzolitic n=1), including the first known occurrence of a diamond vein. SIMS δ13C, δ15N and N concentration data from the FALC diamonds are used to evaluate the nature of post-Archean CHO fluids ascending through the lithospheric mantle beneath the Sask Craton.

Nitrogen-based time-averaged (2 Ga) mantle residence temperatures range from 1050 to 1370°C, with modes at ~1100 and ~1300°C. Carbon isotopic compositions range from −29.2 to −3.0‰, with three discrete clusters about −21.5‰, −16.4‰ (dominated by the diamond vein), and −4.6‰. Within each of these clusters, the typical range of δ13C values of ~3‰ is accompanied by large variations in δ15N and N-abundances, i.e., −5.6‰ to +9.4‰ and 0.1 to 1435 at. ppm, respectively.

The observed δ13C-δ15N-N variations cannot be explained by Rayleigh fractionation during precipitation of diamond in a fluid limited environment. Rather, the large compositional variations in N-chemistry, as well as the bimodal temperature distribution suggest a complex diamond formation history involving multiple generations of fluids with distinctly different δ13C-N compositions. Positive δ15N and extremely negative δ13C values are commonly attributed to fluids derived from recycled crustal material, consistent with the eclogitic paragenesis of the host xenoliths. The population with high TNitrogen (mode ~1300 °C) resided at temperatures that exceed the hydrous solidus of metabasalt and, consequently, their diamond forming medium had to be either reducing (methane dominated CHO fluid) or a melt.