Fractionation of radiogenic Pb isotopes induced by acid leaching:

A pervasive phenomenon in Pb-isotopic dating of meteorites

Y. Amelin¹, Q.-Z. Yin², P. Koefoed¹, R. Merle¹, M.H. Huyskens², T. Iizuka³

 ¹Research School of Earth Sciences, The Australian National University, <u>yuri.amelin@anu.edu.au</u>;
 ²Department of Earth and Planetary Sciences, University of California-Davis, USA;
 ³Department of Earth and Plnetary Science, The University of Tokyo, Japan

Pb-Pb isochron dating is the only method of extant radionuclide chronometry of meteorites capable of precision better than ±1 Ma. Accurate Pbisotopic age determination depends on efficient removal of all non-radiogenic Pb components. Separation of Pb isotope components is usually accomplished by sequential leaching in acids and varying their concentration, temperature, and duration of treatment [1-3]. Application of sequential dissolution relies on assumption that this treatment does not cause isotopic fractionation within individual Pb isotope components, most importantly in radiogenic ²⁰⁷Pb*/²⁰⁶Pb* ratio. This assumption was long considered self-evident, however there is a growing number of examples where certain steps of acid treatment, especially those steps that release substantial fraction of the total content of radiogenic Pb, cause measurable fractionation of radiogenic ²⁰⁷Pb*/²⁰⁶Pb* ratio. First observed in extensive leaching of the Allende CAI SJ-101 in hot concentrated HBr [4], this fractionation was thought to be an artefact of that particular treatment, until 207Pb*/206Pb* fractionation of similar magnitude was observed in leaching of Allende CAI A63 [5] and pyroxene from achondrites Asuka 881394 [6] and NWA 6693 and NWA 10132 (unpublished data of the authors) in dilute HF - a standard part of currently used partial dissolution schemes. The nature of this fractionation is uncertain, but it may be caused by the difference in the decay track sizes between the 235 U and 238 U decay chains [7]. The effects of fractionation can be circumvented by numeric recombination of leaching steps, but developing alternative treatments that are free from ²⁰⁷Pb*/²⁰⁶Pb* fractionation would be a better solution.

[1] Connelly J. N. and Bizzarro M. (2009) CG, 259, 143-151.
[2] Connelly J. N. et al. (2012) Science, 338, 651-655.
[3] Amelin Y. et al. (2014) LPSC, #2646.
[4] Amelin Y. et al. (2010) EPSL, 343-350.
[5] Yin Q.-Z. et al. (2015) MetSoc, #5088.
[6] Koefoed P. et al. (2015) LPSC, #1842.
[7] Amelin Y. et al. (2009) GCA, 73, 5212-5223.