Experimental studies on CO₂ (SO₂)-saline-minerals interaction with related to CO₂ geological storage

CHEN JIAWEI^{12*}, ZHANG YANGYANG²

¹ State Key Laboratory of Biogeology and Environmental Geology, Beijing 100083, China. (chenjiawei@cugb.edu.cn; sunnybunny5192@126.com)

² School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

Geologic CO_2 sequestration (GCS) in deep saline aquifers is the most effective way to reduce CO_2 emissions. Since the injected CO_2 is not pure and always contains several reducing gases such as SO_2 . Considering dissolved SO_2 in water might seriously change the pH value of the solution and accelerate the water-rock reaction, we conducted experiments for the investigation on the impure CO_2 -brine-minerals interactions.

In our present study, pure CO_2 and impure CO_2 (Vol. % SO₂= 0.5%) were reacted for two weeks with calcite at 50°C and 10MPa, and feldspar at 200°C and 15MPa, respectively. Cleaved surfaces of minerals were characterized by SEM-EDS and the solutions were measured by ICP-OES. The results showed the dissolution of the calcite surface could be observed in both pure and impure CO₂, while the corrosion pits were deeper in the later system. A few of corrosion pits and secondary minerals were found on the feldspar surface in these two systems. The platy secondary minerals generated near the corrosion pits piled up into rose-like shape on early formed flakes in pure \dot{CO}_2 . While in the \dot{CO}_2 mixed with SO_2 system, the secondary minerals grew preferentially on feldspar surface and developed into a thin layer. The secondary minerals were confirmed to be kaolinite and phyllosilicate. It indicated SO2 only enhanced the dissolution of calcite and changed the development area of secondary minerals on feldspar surface. The results indicate that impure CO2 injection would be carefully considered for the related CO₂ geological storage.

The study was supported by National Natural Science Foundation of China (41272061, 41472232), Fundamental Research Funds for the Central Universities.