Surface concentrations of ⁹⁰Sr, ¹²⁹I, and actinides measured in coastal waters off Japan 2-3 years after the Fukushima Daiichi nuclear accident

$$\label{eq:n.casacuberta} \begin{split} N.CASACUBERTA^1, M.CASTRILLEJO^2,\\ M.CHRISTL^1, C.VOCKENHUBER^1, X. JUAN^2, H.-\\ A.SYNAL^1, P.MASQUÉ^{2,3} \& K.O.BUESSELER^4 \end{split}$$

¹ETH Zurich, Switzerland

(ncasacuberta@phys.ethz.ch) ²Universitat Autònoma de Barcelona, Spain ³Edith Cowan University, Australia. ⁴Woods Hole Oceanographic Institution, USA

In the years following the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011, monitoring of less radiologically relevant radionuclides has received limited attention. This is the case of ⁹⁰Sr, ¹²⁹I and actinides (²³⁶U and Puisotopes). Their monitoring is however important because: i) they can be proxies for other radionuclides with radiological interest; and/or ii) they are suitable as geochemical tracers providing valuable information about hydrological, atmospheric, and geochemical processes. Additionally, two years after the accident, ⁹⁰Sr was still a major contaminant in waters accumulated within the nuclear facility and storage tanks.

In 2013 and 2014, three cruises took place in the coast off Japan, with the aim to re-evaluate the concentrations and the distribution of artificial radionuclides from FDNPP and identify the current potential sources of these isotopes, with particular emphasis to 90 Sr.

Here we present results of 90 Sr, 129 I, 236 U and Puisotopes from May 2013, May 2014 and October 2014 onboard R/V Daisan Kaiyo Maru and R/V Shinsei Maru. Surface concentrations of 90 Sr and 129 I up to 8.9 ± 0.4 Bq·m⁻³ [1] and $780\pm15\times10^7$ at·kg⁻¹, respectively, suggest ongoing releases of these radionuclides from the FDNPP. Potential releases of 236 U and Pu-isotopes remain under discussion. The evolution of atomic and/or activity ratios of 137 Cs/ 90 Sr, 129 I/ 137 Cs, 129 I/ 90 Sr with time corroborate the ongoing releases of radionuclides to the coast off Japan.

Upper boundary estimates of ⁹⁰Sr and ¹²⁹I releases during the years following the FDNPP accident are minor compared to the total amounts released in 2011. Yet this study indicates that a continuous surveillance of artificial radionuclides to the Pacific Ocean is still required.

[1] Castrillejo *et al.* (2016) *Environ. Sci. Technol.* **50**, 173-180.