Compound-specific C- and H-isotope compositions from Carboniferous and Permian source rocks in the Junggar Basin

S. X. ZHOU1, J. LI1, D. L. FU1,2, Y. MA1,2

1. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China; (correspondence: sxzhou@lzb.ac.cn)
2. University of Chinese Academy of Sciences, Beijing 100049, China

Carboniferous and Permian rocks are important petroleum-generated source rocks in the Junggar basin of northwestern China. In this study, biomarkers, carbon isotope of total organic matter, and stable carbon and hydrogen isotope of n-alkanes from Carboniferous and Permian source rocks were measured in order to obtain information for their sedimentary environment and search potential features for oil-rock correlation.

High Pr/Ph ratios (1-3) and 13C enrichment of total organic carbon (> -25‰) for Carboniferous source rocks in the northwestern and eastern region of the basin shows the depositional environment are partial oxidation of freshwater lake. Carbon isotopic values of individual alkanes (C13-C30) vary from -21.6 to -32.4‰, and difference between stable carbon isotopic of individual alkanes and total organic matter is about 5-8.5‰. δD values of n-alkanes from these source rocks range from -112‰ to -83‰ and from -156‰ to -120‰.

Organic carbon isotopic values are lighter than -26‰, Pr/Ph ratio range from 0.7 to 1.9, and β-carotane and gammacerane are present in most Permian source rocks. Whereas δ13C values of n-alkanes range from -27‰ to -37‰. δD values of individual alkanes and δ13C of total organic matter is 3.7-7.7‰. δD values of n-alkanes from Permian are depleted relative to Carboniferous source rocks. Phytane has δD values similar to the pristane in two kinds of source rocks and they are depleted in D relative to the n-alkanes. The differences in δD and δ13C of individual compounds of these two kind of source rock can be used for oil-oil and oil-rock correlation.

This work was supported by the National Major Petroleum Project of China (2016ZX05003002-4), the Chinese academy of sciences strategic leading science and technology project(XDB10010103) and the Chinese National Natural Science Foundation (40572088, 41072105).