H₂O paradox and possible solutions

YOUXUE ZHANG¹

¹Dept. of Earth & Environ. Sciences, Univ. of Michigan, Ann Arbor, MI 48109, USA <youxue@umich.edu>

The concentration of H₂O in the mantle plays a significant role in the viscosity and partial melting and hence the convection and evolution of the mantle. Even though the composition of the primitive mantle (PM) is thought to be well known [1-2], the concentration of H₂O in PM remains paradoxial because different methods of estimation give different results [3]: using H₂O/Ce ratio in MORB and OIB and Ce concentration in PM, the H₂O concentration in PM would be (300 ± 1.5) ppm; using mass balance by adding surface water to the mantle and assuming that the mass of the degassed mantle is about 1/2 of the whole mantle [3-4], H₂O concentration in PM would be (900 ± 1.3) ppm [2-3]. In this report, I explore possible solutions to reconcile the paradox.

One possible solution to the above H₂O paradox is to assume that some deep Earth reservoirs with high H₂O/Ce ratios have not been sampled by MORB and OIB, meaning that the H₂O/Ce ratio approach is not reliable. The best candidate of such a deep reservoir is the D" layer. The second possible solution is to assume that the entire mantle was degassed early during the magma ocean stage, which lowered H₂O/Ce ratio in the whole mantle. However, due to the low H₂O concentration and high H₂O solubility in the magma ocean, the amount of early degassed H₂O is expected to be negligible. The third possible solution is to assume that ocean water only paritally came from mantle degassing, but partially from extraterrestrial sources such as comets [5]. This scenario would work as long as the contributing comets and asteroids have average D/H ratio similar to that of ocean water [6]. In this scenario, the composition of the bulk silicate earth (meaning mantle+crust+oceans+atmosphere) would not be the same as PM, at least for H2O. Extraterrestrial contribution is also able to reconcile difficulties in Ne and Ar systematics [3].

In conclusion, the likely solution to the H_2O paradox is extraterrestrial contribution to ocean water, indicating PM contains only about (300 ± 1.5) ppm H_2O . Another possible solution is the storage of materials with high H_2O/Ce ratio in the D" layer, indicating PM contains about (900 ± 1.3) ppm H_2O but no PM is sampled by MORB and OIB.

 McDonough & Sun (1995), Chem. Geol. 120,
223. [2] Palme & O'Neill (2014), Treatise on Geochemistry 3, 1. [3] Zhang (2014), Treatise on Geochemistry 6, 37. [4] Zhang & Zindler (1989),
JGR 94, 13719. [5] Chyba (1987), Nature 330, 632.
[6] Hartogh et al. (2011), Nature 478, 218.