Magma-derived CO₂ emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at the India-Asia continental subduction zone

MAOLIANG ZHANG 1*, ZHENGFU GUO 1, LIHONG ZHANG 1, YUTAO SUN 1, ZHIHUI CHENG 1, TSANYAO FRANK YANG 2

 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China, mlzhang@mail.iggcas.ac.cn (* presenting author)
Department of Geosciences, National Taiwan University, Taipei 10699

together Large-scale active volcanoes, strongly modern hydrothermal activities, are located in the Tengchong volcanic field (TVF) of the southeastern margin in the India-Asia continental subduction zone. They provide an important opportunity for estimating deep carbon flux released by active volcanoes at the India-Asia continental subduction zone and probing nature of continental lithospheric subduction-related volatile recycling. We performed a soil microseepage survey using accumulation chamber method and calculated an average soil CO_2 flux of ca. 280 g m⁻² d⁻¹ and a total soil CO_2 output of 6.30×10^5 t a^{-1} for the Rehai geothermal park and adjacent region in the TVF. Combined with previous estimation of magma-derived CO_2 flux from hot springs (5.30 × 10⁴ t a⁻¹) and soil microseepage in other two volcanic and geothermal anomaly regions (3.80 \times 10⁶ t a⁻¹), total magma-derived CO_2 flux of the whole TVF is about 4.48×10^6 t a⁻¹, which should be incorporated for estimation of the global volcanic subaerial CO2 flux in future. Both bubble gas and soil gas samples from the TVF display enrichment in CO_2 (>85%) and remarkable contribution from mantle components as suggested by ${}^{3}\text{He}/{}^{4}\text{He}$ (1.55–5.27 R_A) and $\delta^{13}\text{C-CO}_{2}$ (-9.00% to -2.07%). Combined with previous studies on Holocene volcanic rocks and seismic tomography, we suggest that components from both recycled crust and continental crust were involved in origin and evolution of mantle-derived magmatic volatiles in the TVF based on a He-C isotope coupling model. We suggest that mantle-derived volcanism at continental subduction zone can be important mechanism for liberation of carbon stored in ancient crustal carbonates, which has the potential to act as a complement to volatile recycling mechanism at subduction zones.