Dark Production of Hydrogen Peroxide in Groundwater at Rifle, Colorado

XIU YUAN1*, PETER S. NICO2, KENNETH H. WILLIAMS3, CHAD HOBSON4, JAMES A. DAVIS5

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
1*xiuyuan@lbl.gov; 2 psnico@lbl.gov; 3 khwilliams@lbl.gov; 4 chobson@lbl.gov; 5 jadavis@lbl.gov

The dominant source of H$_2$O$_2$ in natural waters has long been thought to be photo-dependent processes, yet recent studies have indicated that dark production of H$_2$O$_2$ in deep seawater, principally biological production, is potentially on par with photochemical generation. Here, we present evidence for the unrecognized and light-independent generation of H$_2$O$_2$ in groundwater in an alluvial aquifer adjacent to the Colorado River near Rifle, CO. In situ H$_2$O$_2$ concentrations were determined using a sensitive chemiluminescence-based method. Our results suggest H$_2$O$_2$ concentrations ranged from lower than the detection limit (< 1 nM) to 54 nM along the depth profile of several groundwater wells across the Rifle site, which were comparable to the concentrations presented in sunlit waters. Such detected H$_2$O$_2$ patterns in Rifle groundwater suggest the existence of a balance between H$_2$O$_2$ sources and sinks, which potentially involves a cascade of biogeochemically significant processes, including the generation of highly reactive species (such as hydroxyl radical), the interconversions between ferrous and ferric species, significant biological production and decomposition, and further transformation of natural organic matter and other chemical pollutants. More importantly, our results also suggest that reactive oxygen species (ROS) production is not only widespread in oceanic and atmospheric systems, but also in the subsurface domain, the large but probably the least-understood component of the biogeochemical cycles. Occurrence of ROS in the subsurface system could potentially have high impact on metal/nutrition cycling on groundwater-dependent ecosystems, such as wetlands and springs.