Goldschmidt Medal Abstract
The diversity of isotopic ordering in small molecules
LAURENCE Y. YEUNG1

1Department of Earth Science, Rice University, Houston, TX 77005

As recent analytical advances have enabled us to explore isotopic ordering in geochemical systems more broadly, the diversity of clumped isotope signatures and their applications is becoming apparent: Equilibrium clumped-isotope signatures can be used not only as geothermometers but also geospeedometers [1, 2]; kinetic clumped-isotope effects can be predicted from first principles and verified by laboratory measurements, opening the door to a class of isotopic reaction fingerprints that can complement isotopic reservoir fingerprints [3, 4]; combinatorial “declumping” reflects intramolecular isotopic heterogeneity, and can in principle be used to extract information about geochemical reservoirs and reaction pathways [5]. Yet the field is still young, and many of its most significant contributions lie ahead.

Perhaps the most interesting aspect of clumped-isotope approaches is their ability to distinguish process-level effects from reservoir effects. Contrasts in chemistry between different reservoirs (e.g., stratospheric vs. tropospheric ozone photochemistry) can be exploited within a reaction-transport framework to extract rates of reservoir mixing, material residence times, and flux budgets, potentially even from the geologic record. I will describe recent developments in the clumped-isotope geochemistry of O2 and N2, the basic principles gained from examining clumped-isotope systematics of these small molecules, and emerging applications in atmospheric and biogeochemical research within this context.