Rapid determination of U-236 in the soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident using single extraction chromatography combined with triple-quadrupole inductively coupled plasma-mass spectrometry

G.S. YANG^{1,2}*, H. TAZOE¹ AND M. YAMADA¹

¹ Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan (*correspondence: yanggs@hirosaki-u.ac.jp; tazoe@hirosaki-u.ac.jp; myamada@hirosaki-u.ac.jp)

² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Method Development for ²³⁶U in Soil

Based on use of the new generation of triple-quadrupole ICP-MS (ICP-MS/MS), two procedures were proposed: a total dissolution with HF + HNO₃ + HClO₄ followed by single DGA chromatographic separation (Figure 1). The analytical accuracy and precision of ²³⁶U/²³⁸U ratios, measured as ²³⁶U¹⁶O⁺/²³⁸U¹⁶O⁺, were validated by using the reference materials IAEA-135, IAEA-385, IAEA-447, and JSAC 0471.

U Isotope in the Soil Contaminated by the FDNPP Accident

For 46 soil samples contaminated by the FDNPP accident, the ²³⁶U/²³⁸U isotopic ratio ((0.99–13.5)×10⁻⁸) was comparable with those of global fallout values found in surface soil in Japan [1, 2], indicating the release of radioactive U from the FDNPP accident was a trace amount.

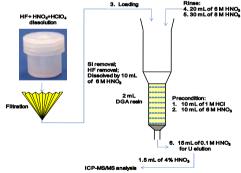


Figure 1: Experimental procedure.

[1]Sakaguchi *et al.* (2009) *Sci. Total Environ.* **407**, 4238–4242. [2] Sakaguchi *et al.* (2010) *Sci. Total Environ.* **408**, 5392–5398.