Vanadium isotope fractionation in low-temperature environments

FEI WU1*, YU-HAN QI1, FEI-FEI ZHANG2, THOMAS J. ALGEO3, HUI-MIN YU1, FANG HUANG1

1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
*correspondence: feyxuan@gmail.com)
2 School of Earth & Space Exploration, Arizona State University, Tempe, AZ 85281, USA
3 Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 USA

Stable isotope ratios of redox-sensitive metals are of interest to paleo-redox studies because redox reactions are often associated with isotope fractionation. Recent theoretical calculations and laboratory measurements [1, 2] have shown the promise of the vanadium (V) isotope system as a geochemical paleo-redox proxy. In order to understand the mechanisms for V isotope fractionation in Earth-surface environments, we investigated V isotope effects during oxidative surface weathering of basalt, and authigenic V uptake by oxic and anoxic marine deposits.

We have measured vanadium isotopic compositions of a laterite profile developed on basalt bedrock in South China, with long-term precision better than 0.1‰ (2SD). The laterite samples displayed a narrow range of δ^{51}V values (-0.95 to -0.75‰), indistinguishable from the parent basalt, despite the mobility of V in laterites. Our study suggested negligible V isotope fractionation during tropical oxidative weathering. The δ^{51}V of marine ferromanganese crusts varies from -1.64 to -0.91‰. Such light isotopic compositions are likely related to preferential incorporation of 50V from oxic seawater through surface adsorption of V. Ongoing studies are exploring the V isotope for samples from anoxic facies of the Pera Margin to constrain V isotope fractionation under oxygen-deficient settings.

We also determined the δ^{51}V of Ediacaran Doushantuo member II organic-rich black shales from deep basin in South China. Our data yielded systematic V isotope variation in the stratigraphic dimension with δ^{51}V values ranging from -0.93 to -0.51‰. The top of the profile shows homogeneous V isotope compositions with an average of -0.60±0.10‰ (n = 17). A negative shift of δ^{51}V (to -0.93‰) occurs at the bottom of the profile accompanied by authigenic enrichment of V, which may be attributed to changes of redox conditions. This study highlight the potential application of the V isotope system to track paleo-redox conditions.