Comparison of ¹⁴C isotopebased correction methods for quantifying petroleum hydrocarbon degradation rates

ANNE WOZNEY¹ IAN CLARK² AND K. ULRICH MAYER³

^{1,} University of Ottawa, Canada

² University of Ottawa, Canada (<u>idclark@uottawa.ca</u>)

³ University of British Columbia

(umayer@eos.ubc.ca)

To implement monitored source zone natural attenuation (SZNA) at hydrocarbon contaminated sites, contaminant biodegradation rates must be quantified in order to estimate source zone longevity. Surficial CO₂ efflux surveys have recently been used to delineate hydrocarbon source zones and to provide estimates of hydrocarbon degradation rates.¹ This approach requires accurately distinguishing between petroleum-derived CO2 respiration and background natural soil respiration. Radiocarbon can be used to quantify petroleum derived ¹⁴C-depleted CO₂ efflux background ¹⁴C-enriched natural from soil respiration¹. However, a standard field method for radiocarbon sample collection has not been developed for CO₂ efflux surveys.

Detailed CO_2 efflux surveys were conducted using an LI-8100 dynamic flux chamber overlying LNAPL source zones at a historical pipeline rupture site. Survey flux and compositional gas results confirmed elevated CO2 efflux at locations previously identified as contaminated. Four different field methods were used to obtain gas samples for ¹⁴C isotopic analysis; including direct sampling from short-term dynamic flux chambers, long term static chambers, soil vapour probes and vadose zone monitoring wells. A ¹⁴C correction for each method was applied to determine a petroleum-derived CO₂ efflux rate, and a method comparison was conducted. Results indicated that ¹⁴C corrected fluxes from long term chambers closely correlate with ¹⁴C corrected fluxes derived from subsurface measurements, while short term chambers had low sample yields and derived fluxes deviated greatly from other methods. Analysis showed that ¹⁴C isotopes can be used effectively to determine the contribution of petroleum biodegradation to measured CO_2 efflux, therefore allowing the quantification of hydrocarbon allowing the quantification degradation rates.

References

[1] Sihota and Mayer (2012) *Vadose Zone J* **11**, doi:10.2136/vzj2011.0204.

⁽awozn019@uottawa.ca)