The influence of weathering processes on riverine uranium isotopes in small mountainous rivers of Taiwan

RUO-MEI WANG¹*, KUO-FANG HUANG¹, JR-CHUAN HUANG², PEI-HAO CHEN², YU-TING SHIH²

¹Institute of Earth Sciences, Academia Sinica, Taiwan (*correspondence: rmwang4112@gmail.com) ²Department of Geography, National Taiwan University, Taiwan

Riverine (²³⁴U/²³⁸U) activity ratios have been widely used for studying weathering processes and source mixing in river catchments around the world and can be considered as a potential tool that reflects the extent of physical erosion and mineral dissolution during weathering. The main controls on riverine $(^{234}\text{U}/^{238}\text{U})$ in mountainous rivers, however, are still poorly constrained. This study presents major and trace elements and uranium isotopic data for dissolved phase from mountainous rivers of Taiwan. In general, the highest $(^{234}U)^{238}U$ were observed in the up-steam of most of the river catchments, and showed a decreasing trend towards the down-steam, highlighting the important roles of geomorphic regime and physical erosion in modulating the riverine (234U/238U). Of special interest is that the relationship between $(^{234}U/^{238}U)$ and net uplift rate are significantly distinct in different river catchments, suggesting that the variation of riverine $\binom{234}{2^{238}}$ ratio is not solely controlled by physical erosion in Taiwan mountainous rivers. Other potential factors will be further discussed in the presented work.