Liquid immiscibility in the Panzhihua mafic intrusion hosting giant Fe-Ti oxide deposit in the Emeishan large igneous province (ELIP), SW China

K Wang1,2, C.Y. Wang2*, C.M. Xing2, Z.Y. Ren3 and H. Dong1,2

1 University of Chinese Academy of Sciences, Beijing 100049, China (kunwang89@126.com)
2 Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China (*correspondence: wang_yan@gig.ac.cn)
3 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China (zyren@gig.ac.cn)

Silicate melt immiscibility is one of the basic methods of magma evolution and has been widely reported in various types of rocks[1, 2, 3, 4]. The opposing trends of immiscible melts are fascinating and may be a potential ore forming factor, however, its role is deemed to be minor in petrogenesis and ore genesis[5]. In this contribution, we identify melt inclusions with highly variable compositions and Fe-rich reactive microstructure, which reflects immiscibility, in the Panzhihua intrusion, ELIP. The compositions of melt inclusions recorded in apatite of the middle zone b range from very Si-poor (17.7 wt.% SiO₂, 40.2 wt.% FeO) to very Si-rich (76.5 wt.% SiO₂, 0.73 wt.% FeO). Fe-rich replacive microstructures in the lower zone indicate a high temperature immiscibility and disclose the upward migration of interstitial immiscible Si-rich melt. The wide composition range of melt inclusions in apatite is attributed to the coexistence of in situ melts and immiscible Si-rich melts migrated from different layer positions. The downward migration of network Fe-rich melt forms a Fe-rich melt pool at the base of the intrusion. In this Scenario, large amount of magnetites crystallized from the Fe-rich melt to form massive ores containing embayed silicates. This study highlights that large-scale separation of immiscible liquids may play a significant role in the petrogenesis and metallogenesis of the Panzhihua intrusion.