Development of Precise Isotope Analysis for Small Amount of Pb using ²⁰⁴Pb-²⁰⁷Pb Double Spike TIMS

*M. TOBITA¹, Y. FUKAMI², T. YOKOYAMA¹, T. USUI¹, R. MORIWAKI¹ AND H. ASANUMA¹

¹Dept. Earth Planet. Sci., Tokyo Institute of Technology, Muguro-ku, Tokyo, Japan. (*tobita.m.aa@m.titech.ac.jp)²JAMSTEC, Natsushima-cho, Yokosuka, Japan.

Introduction: High-precision Pb isotopic analysis is a crucial technique in the application of U-Th-Pb systematics. The 204 Pb- 207 Pb double spike method with thermal ionization mass spectrometry (DS-TIMS) [1] has been widely performed using large amount of Pb (>10 ng). However, it is still difficult to precisely and accurately determine the isotopic compositions of sub-nanogram quantities of Pb, due mainly to the weak beam intensity of the lowest abundance isotope 204 Pb, as well as to the involvement of chemical blanks. In this study, we performed the optimization of analytical protocol for the DS-TIMS method using relatively small amount of Pb (0.1–10 ng).

Experiments: NIST 981 was used as a Pb isotope standard. The Pb isotopic analysis was performed with TRITON *plus* (Thermo Fisher Sci.) at Tokyo Tech. To obtain the large beam intensities and high precisions, we varied the analytical conditions including the amount of emission activator (colloidal silicic acid, Merck [2]), the sample loading width on the filament, filament heating rate, and data reduction methods.

Results and Discussion: We discovered that the most optimized analytical condition was to load Pb on a single Re filament (2.1 mm width) with 1.0 μ L of colloidal silicic acid [2], and to continue heating the filament at a rate of 90 and 450 mA/min for 5.0-10 and 0.1-1.0 ng of Pb, respectively, until evaporating all Pb on the filament. The isotope ratios (^{206,207,208}Pb/²⁰⁴Pb) were determined from the total ion currents of individual isotopes by accepting the data of which the minimum beam intensity exceeded 5 mV. The reproducibility of ²⁰⁶Pb/²⁰⁴Pb ratios obtained by our method is as follows; 0.041‰ (10 ng), 0.035‰ (5 ng), 0.254‰ (1.0 ng), 0.358‰ (0.5 ng), and 1.15% (0.1 ng). These values are smaller than those of previous studies that used similar amounts of Pb (0.2-0.5 ng [3], 20 ng [4]). In addition, the Pb isotope compositions of NIST 981 obtained in this study were consistent with the data previously published [3, 4].

References: [1] M. H. Dodson, J. Sci. Instrum., 1963, **40**, 289. [2] H. Gerstenberger and G. Haase, *Chem. Geol.*, 1997, **136**, 309. [3] Y. Amelin and W. J. Davis, JAAS, 2006, **21**, 1053; [4] M. F. Thirwall, *Chem. Geol.*, 2000, **163**, 299.