Mechanism of Li diffusion in zircon

MING TANG1*, ROBERTA L. RUDNICK1,2, WILLIAM F. MCDONOUGH3, DUSTIN TRAIL3, MAITRAYEE BOSE4

1Department of Geology, University of Maryland, College Park, MD 20742, USA
2Department of Earth Science, University of California, Santa Barbara, CA 93106, USA
3Department of Earth & Environmental Sciences, University of Rochester, NY 14627, USA
4School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA

(*)correspondence: tangmyes@gmail.com

Li isotopes in zircon can potentially be used to infer magmatic sources and/or as a speedometer for magmatic and metamorphic processes. Use of δ7Li in zircon is, however, impeded by uncertainty regarding the degree to which Li diffuses in zircon. We studied natural and synthetic zircons to identify the mechanism(s) of Li diffusion in zircon and the possible role of charge coupling between Li and REE+Y.

High spatial resolution ToF SIMS imaging identified sharp Li concentration gradients and NanoSIMS Li isotope profiled along these gradients in natural zircons show that δ7Li variations (≥20‰) are prevalent in natural zircons. The range of δ7Li measured within each zircon grain is significantly greater than that observed in all igneous and sedimentary rocks.

We modeled Li in a TTG zircon (C88_29_7_6) that shows a simple Li concentration gradient coupled with a core-rim texture, ideal for studying the Li diffusion mechanism(s). This zircon was previously characterized for its Li isotopic and trace element compositions using conventional SIMS (Bouvier et al. [1]). Within the rim of this zircon, the Li isotope profile correlates with Li/Y ratio and anti-correlates with Li concentration, suggesting an important role for Y (and REE) in controlling Li activity and, hence, diffusion. This feature, together with the continuous Li diffusion profiles (dipping δ7Li) across the sharp Li concentration boundary, is consistent with the presence of both slow diffusing Li (charge coupled with REE+Y) and fast diffusing Li (charge coupled with other chemical species) in zircon. During Li diffusion, charge coupling between Li and REE+Y takes place as a substitution reaction, in which Li ions substitute for other chemical species that couple with REE and Y in the zircon lattice. We argue that the ratio of slow/fast-diffusing Li is determined by the numbers of REE+Y coupling sites vs. other charge coupling sites for Li and a substitution coefficient.