The characteristics of -OH/H₂O in plagioclase by solar wind implantation simulate

 $\begin{array}{l} \text{H. TANG}^1, X.\ Y.\ Li^{1*}, S.\ J.\ WANG^2, J.\ Z.\ Liu^1,\ Y.\\ Li^1 \end{array}$

¹¹ Center for Lunar and Planetary Science Research, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

² State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

The possibility of -OH/ H_2O formation in the lunar surface has been supposed to the interaction between the proton from solar wind and the oxygen in the regolith [1, 2, 3]. The polished thin sample of plagioclase has implanted with 7 keV H^+ at the fluences of 10^{17} ions/cm². FTIR analyses has showed the obvious increased hydroxyl and H_2O peak about 3622 cm⁻¹ (2.76 μ m) and about 3356 cm⁻¹ (2.98 μ m) after ion implantation respectively, compared with small OH and H_2O absorption before ion implantation. The estimated increased contents of OH and H_2O in plagioclase after ion implantation are 941 ppm and 794 ppm respectively.

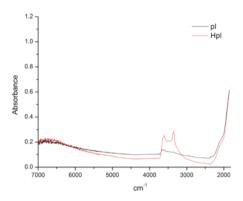


Figure 1: The infrared spectra of plagioclase before and after ion implantation experiment

[1] Pieters et al. (2009) *Science* 326, 568-572. [2] Sunshine et al. \square 2009 \square *Science* 326, 565-568. [3] Clark (2009) *Science* 326, 562-564.