LA-ICP-MS U-Pb Zircon ages and C-O isotope geochemistry of the Fenzishan Magnesite, North China Craton: implications for the Great Oxidation Event and ore genesis

H.S. TANG ${ }^{1}$, Y.J. CHEN ${ }^{2 *}$, K.Y. LI ${ }^{2}$, W.Y. CHEN 2, P. WANG ${ }^{2}$, Y.F. YANG ${ }^{2}$
${ }^{1}$ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550008, China. (correspondence:
tanghaoshu@163.com)
${ }^{2}$ Key Laboratory of Crustal and Orogenic Evolution, Peking University, 5 Yiheyuan Road, Beijing 100871, China. (yjchen@pku.edu.cn)

The Great Oxidation Event (GOE) throughout overprinted by the early Paleoproterozoic metallogenic explosion in early Precambrian cratons, such as North China Craton (NCC). The greenschist-amphibolite facies $2.24-1.9 \mathrm{Ga}$ Fenzishan Group of the Jiao-Liao-Ji belt, NCC, hosts numerous ore deposits and includes, in ascending order, the $2.24-2.193 \mathrm{Ga}$ Xiaosong (BIFs, marble), Zhujiakuang (tourmaline, andalusite, kyanite), Zhanggezhuang (marble, magnistite, talc), Jutun (graphite, marble) and Gangyu formations. Here we report LA-ICP-MS U-Pb Zircon dating of hangingwall rocks from the No. 6 (FZS12) and the No. 5 (FZS22) ore bodys of the Fengzishan magnesite ore and present C and O isotope analyses of 30 samples from the Zhanggezhuang Formation. A total of 164 magmatic source zircon grains were analysed to FZS11 and FZS22 and obtained 87 and 77 concordant ages, respectively. They show age peaks at $\sim 2.35-2.5 \mathrm{Ga}$ and $\sim 2.55-2.6 \mathrm{Ga}$, with four grains having Paleoarchean ages ($>3.1 \mathrm{Ga}$). The youngest concordant detrital zircon ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages are $2113 \pm 53 \mathrm{Ma}$ for FZS11 and 2042 $\pm 33 \mathrm{Ma}$ for FZS22, respectively. Moreover, 30 samples of carbonates yield $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ values of $-2.0-3.4 \%$ and $9.2-$ 20.2%, with average values of $1.3 \pm 0.6 \%$ and $13.6 \pm 2.9 \%$, respectively. It shows a character of the $2.22-2.06$ Ga Lomagundi Event (unique positive $\delta^{13} \mathrm{C}_{\text {carb }}$ excursion), which is a sub-event of the GOE.

