³He excess in air, a new potential tracer for volcanic CO₂ emissions in the atmosphere

C. BOUCHER^{1*}, B. MARTY¹, T. LAN², J. MABRY³, P.G. BURNARD¹, P. BOUCHER⁴, L. ZIMMERMANN¹, D. AYALEW⁵, T. FISCHER⁶, JM. DE MOOR⁶

AND M. ZELENSKI⁷

¹CRPG/CNRS, University of Lorraine, Nancy, France.

²IES, Academia Sinica, Taïwan.

³ Department of Earth Sciences, University of Oxford, UK.

⁴ ÉTS of Montreal, Qc, Canada.

⁵ Department of Geology and Geophysics. Addis Ababa University, Ethiopia.

⁶Department of Earth and Planetary Sciences,

University of New Mexico, Albuquerque, USA.

⁷ Russian Academy of Sciences, Moscow, Russia

Estimates of volcanic CO2 emissions from the mantle can be obtained from both the primary volatile CO₂/³He ratio and the helium fluxes [1]. This latter may be evaluated from local and regional variations of the atmospheric helium isotope ratio [R_A= $({}^{3}\text{He}/{}^{4}\text{He})_{ATM}]$. In 2011, we attempted to detect ${}^{3}\text{He}$ excesses in air due to subaerial release of magmatic gases enriched in ³He. We focused on the Erta Ale region in Ethiopia, which presents a major volcanic activity marked by a permanent lava lake. We used an accumulation chamber placed on the soil surface to evaluate CO2 fluxes [e.g., 2] from fumarolic sources. Air samples have been collected from this chamber, above the lava lake and from the crater and the rifting areas. They were analyzed for noble gases in the CRPG laboratory (Nancy, France). We found no evidence of variation of the $R_{\rm A}$ above the rifting area and the crater zones. However, air samples from the accumulation chamber and the lava lake show ³He excesses (1.3±0.6% for the latter). Significant variations of the $R_{\rm A}$ with time in the accumulation chamber allows us to estimate for the Erta Ale caldera, a maximum ³He soil flux of (0.022 ± 0.002) mol/yr. This correspond to a CO2 fluxes of (6.6 ± 0.5) *10⁷ mol/yr, which point to a CO₂/³He ratio of $(3.0\pm0.4)*10^9$. Based on this ratio and assuming a plume moving at 7 m/s generated by the active zone lava lake (≈8m of diameter), we evaluate a lava lake ^3He and CO_2 fluxes of (0.19±0.10) mol/yr and (5.6± 3.0) x 10⁸ mol/yr, respectively. A coherent CO₂ flux of 4.3 x 10⁸ mol/yr is find based on a CO_2/SO_2 ratio of 1.3 from fumaroles [3] and a SO₂ flux of 11 mol/s for the active lava lake [4].

[1] Marty et al. (1989) Chem. Geol. 76, 25-40. [2] Perrier et al. (2009) EPSL, 278 (3), 198-207. [3] Fischer, T.P. (2008) Geochem.J. 42, 21-38. [4] Oppenheimer et al. (2014) Geol. Soc. Am. 32, 509-512.