
Spatial and temporal variability of CO₂ and CH₄ gas transfer velocities in mangrove dominated estuaries

 $\begin{array}{l} J. A. ROSENTRETER^{1*}, D. T. MAHER^{1}, D. T. HO^{2}, \\ M. CALL^{1}, J. G. BARR^{3}, B. D. EYRE^{1} \end{array}$

- ¹ Centre for Coastal Biogeochemistry Research, Southern Cross University, Lismore, New South Wales, Australia (*correspondence: judith.rosentreter@scu.edu.au)
- ² Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- ³ South Florida Natural Resource Center, Everglades National Park, Homestead, Florida, USA

Gas exchange fluxes of CO_2 and CH_4 in mangrove estuaries are an important component of the coastal carbon cycle. The highest uncertainty in the flux computation, however, remains in the estimate of the gas transfer velocity (*k*), which is system specific.

Gas transfer velocities of CO_2 (kCO_2) and CH_4 (kCH_4) were calculated from 215 floating chamber deployments in mangrove dominated estuaries in Australia and the Everglades, USA. High temporal and spatial variability of kCO_2 and kCH_4 was found (0.9 to 28.3 cm h⁻¹), mainly controlled by current generated turbulence.

Figure 1: Temporal variability of kCO_2 and kCH_4 (normalized to the Schmidt number of 600) over a tidal cycle in Southern Moreton Bay, Australia.

A direct comparison of measurement pairs showed kCH_4 was on average 1.2 times higher than kCO_2 , most likely reflecting a microbubble flux, which contributed up to 73 % of the total CH₄ flux. The potential for underestimating CH₄ evasion rates due to the presence of a microbubble flux contribution should be considered in future CH₄ flux studies, especially in ecosystems with high CH₄ saturation levels.