Recent investigation on Agbearing minerals at the River Reef Zone, the Poboya Prospect, Central Sulawesi, Indonesia

T.A. RIVAI¹*, K. YONEZU¹, SYAFRIZAL², D. KUSUMANTO³ AND K. WATANABE¹

¹Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan (*correspondence: tomyalvinrivai@mine.kyushuu.ac.jp)

²Earth Resources Exploration Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung 40191, Indonesia

³Bumi Resources Minerals, Jakarta 12920, Indonesia

Epithermal deposits are generally known to have Au-Ag [1] thus in this study the importance of Agbearing minerals are focused to understand the mineralization condition in addition to electrum. Agbearing minerals were analyzed through ore microscopy and scanning electron microscopy with energy dispersive X-ray.

As the results, several principal Ag-bearing minerals have been recognized, such as electrum, selenopolybasite naumannite-aguilarite, freibergite. Ag, either as a main or supplementary element, is also contained in other minerals: aguilarite-acanthite, argyrodite, pyrargyrite, chalcopyrite, sphalerite and pyrite in various proportion (Table 1). Besides being identified as free grains, these minerals are often coexisted with other minerals in forms of simple-spotty mutual grains and inclusion-host minerals. Further study characteristics of the ore-forming fluid will give us an insight of physicochemical environment of the mineralization.

Mineral	Ag Content (at.%)
Electrum	52.75 - 85.56
Naumannite-aguilarite	64.91-70.54
Aguilarite-acanthite	64.02
Argyrodite	55.68
Selenopolybasite	48.69 - 55.23
Pyrargyrite	40.96 - 46.09
Freibergite	14.40 - 20.82
Chalcopyrite	4.03 - 5.40
Sphalerite	1.02
Pyrite	1.85

Table 1: Ag content in each Ag-bearing mineral.

[1] Hedenquist et al. (1996), Resource Geol. Spec. Publ. 1.