Modeling of As fate governed by naturally occurring Mn-oxides under varying geochemical conditions

BHASKER RATHI^{12*}, JING SUN³ AND HENNING PROMMER¹²⁴

¹ University of Western Australia, Crawley, WA, Australia (*correspondence:

bhasker.rathi@research.uwa.edu.au)

² CSIRO Land and Water, Floreat, WA, Australia (henning.prommer@csiro.au)

³Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA

(jingsun@ldeo.columbia.edu)

⁴National Centre for Groundwater Research and Training, Flinders University, SA, Australia

Arsenic (As) contamination in groundwater poses serious environmental and human health risks. The transformation of arsenite (As^{III}), into less mobile and less toxic arsenate (As^V) enhance As sequestration from groundwater and reduces the risk [1]. Manganese (Mn) oxide minerals are known to oxidize As^{III} to As^V. Mn-oxides commonly occur as coatings and fine-grained aggregates of poorlycrystalline mineral phases in the natural environment. The oxidation process by Mn-oxides can be very rapid, compared to the direct oxidation of aqueous As^{III} by molecular oxygen [2].

A number of mechanisms for As^{III} oxidation by Mn-oxides have been suggested in the literature [3,4,5], of which most are complex and involve several simultaneous reactions. There is a general agreement that the first step in oxidation is adsorption of As^{III} onto either Mn^{IV} or Mn^{III} sites on Mn-oxide surfaces. This is followed by oxidation of sorbed As^{III} by either electron transfer or substitution [4]. The rate of oxidation reaction could differ between Mn^{IV} and Mn^{III} sites. Mn⁺² ions are also produced in the oxidation step from the reductive dissoluton of $Mn^{IV/III}$ oxides. Both, Mn^{+2} and As^{V} , could remain sorbed or form precipitates on the surface and passivate the surface sites, thereby inhibiting further As^{III} oxidation. Other ions, e.g., Fe⁺² and phosphate, are also known to passivate Mn-oxide surface sites [1.6].

In this study, we have reviewed and translated previously proposed conceptual models into a process-based numerical model and evaluated the model against measured data [1].

[1] Wu, Y., et al. (2015) J. of Colloid and Interface Science 457, 319-328. [2] Eary, L.E., et al. (1990) ACS Symposium Series 416, 379-396. [3] Scott, M.J. and Morgan, J.J., (1995) ES&T 29(8), 1898-1905. [4] Nesbitt, H. W., et al. (1998) GCA 62(12), 2097-2110.
[5] Ying, S. C., et al. (2012) GCA 96(0), 294-303. [6] Parikh, S.J., et al. (2010) ES&T 44(10), 3772-3778.