Morphology and polymorphism of calcium carbonate precipitated from different calcium sources via enzyme induced carbonate precipitation

Y. J. Phua ${ }^{*}$, Anja Røyne

Department of Physics, University of Oslo, 0316 Oslo, Norway
(*correspondence: y.j.phua@fys.uio.no)
Enzyme induced carbonate precipitation (EICP) is a biomineralisation process, in which plant-derived urease enzyme is used to hydrolyse urea and precipitate calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$. In this study, plant-derived urease from common jack bean (Canavalia ensiformis) was used to precipitate CaCO_{3} via EICP. Three different calcium sources were used, i.e. calcium chloride $\left(\mathrm{CaCl}_{2}\right)$, calcium lactate and dissolved chalk solution that was prepared by dissolving chalk in lactic acid.

Real-time monitoring of the CaCO_{3} precipitation and crystal growth was performed for up to 72 h using an optical microscope. Structure and morphologies of the CaCO_{3} crystals were further characterised via Raman spectroscopy and scanning electron microscopy. Different morphologies of CaCO_{3} crystals were observed. The sample with CaCl_{2} was dominated by calcite crystals of typical rhombohedral morphology. Spherical shape calcite as shown in Figure 1 was observed in the sample containing lactate.

Similar EICP systems were applied to consolidate sand grains. Morphology and structure of the precipitated CaCO_{3} can have a substantial impact on binding efficiency and properties of the final consolidated product. Mechanical properties of the consolidated sand were evaluated through compression test. X-Ray diffraction analysis was performed to identify different crystals formed in the sample. This study is vital to give a better understanding of the relationship between different calcium sources and morphologies of the precipitated CaCO_{3} by visualising the process, and their effects on the consolidation efficiency.

Figure 1: Spherical shape calcite from the sample with calcium lactate

