Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (²⁶Al, ³⁶Cl, ³He, and ²¹Ne).

M. K. PAVIĆEVIĆ¹, V. CVETKOVIĆ², S. Niedermann³, V. Pejović⁴, G. Amthauer¹, B. Boev5, F. Bosch6, I. Aničin4, W. F. Henning7

¹University of Salzburg, Division of Material Sciences and Physics, A-5020 Salzburg, Austria ²University of Belgrade – Faculty of Mining and

Geology, Đušina 11, 11000 Belgrade, Serbia ³Helmholtz-Zentrum Potsdam – Deutsches

GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany

⁴University of Belgrade – Faculty of Physics, Studentski Trg 12/IV, 11000 Belgrade, Serbia
⁵University of Štip, Faculty of Mining and Geology,

Goce Delčeva 89, 92000 Štip, FYR Macedonia ⁶Gesellschaft für Schwerionenforschung GSI,

Planckstr. 1, D-64291 Darmstadt, Germany

⁷Argonne National Laboratory (ANL), Physics Division, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (²⁶Al and ³⁶Cl) and stable (³He and ²¹Ne) nuclides in quartz, dolomite/calcite, sanidine and diopside. The obtained results suggest that there is accordance in the values obtained by applying ²⁶Al, ³⁶Cl and ²¹Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ~165 m/Ma.