Processes affecting long-term change in ¹³⁷Cs abundance in seabed sediment off Fukushima

S. OTOSAKA^{1*} AND T. KOBAYASHI¹

¹ Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan (*correspondence: otosaka.shigeyoshi@ jaea.go.jp)

Based on continuous observation data at 68 stations in the 150 km radius from the Fukushima Daiichi Nuclear Power Plant, temporal change in cesium-137 (¹³⁷Cs) abundance in surface (0-10 cm) layer of seabed sediment were quantified, and the primary process affecting the temporal change was identified.

Until February 2015, the ¹³⁷Cs abundance in surface sediment in the coastal region (bottom depth ≤ 100 m) decreased at the rate of about 30%/year (radioactive decay is not included). In the offshore region (>100 m depth), no significant temporal change in the ¹³⁷Cs abundance was observed. Here we focus on the following three processes that affect the decrease in the ¹³⁷Cs abundance, and assess their effectiveness.

1) Dilution of ¹³⁷Cs by vertical mixing of sediment: This process can be assessed by applying time-series data of vertical distribution of sedimentary ¹³⁷Cs into a pulse input sediment mixing model. The model estimated up to 70% of ¹³⁷Cs in the coastal sediment was efficiently transported to the lower sedimentary layers in the first 5 years after accident.

2) Resuspension and lateral transport: This process was assessed by comparing horizontal export flux of particulate ¹³⁷Cs estimated from sediment trap experiments off Fukushima and total ¹³⁷Cs inventory in the coastal sediment. Sediment traps in the outer shelf certainly collected ¹³⁷Cs-bound particles originating from the coastal region, but the annual ¹³⁷Cs export to the offshore was only $1\sim 2\%$ of total ¹³⁷Cs inventory in the coastal sediment.

3) Desorption of 137 Cs from sediment: Desorption of 137 Cs was verified by speciation and suspension experiments. Most of 137 Cs in the coastal sediments was incorporated into lithogenic fractions. The estimated annual desorption rate was less than 5%, and the result indicated that this incorporation is almost irreversible.

In conclusion, we consider that the primary process affecting the ¹³⁷Cs abundance in surface sediment is vertical mixing of sediment due to bioturbation or storm events. Although the dilution effect slows down with time, we expect that, by 2060, the abundance of ¹³⁷Cs in the coastal surface sediment will decrease to about 5% of the initial abundance by the dilution and radioactive decay.