Origin of large soluble molecules in Murchison chondrite.

F. R. ORTHOUS-DAUNAY ${ }^{1}$, L. FLANDINET 1, R. Thissen 1, V. Vuitton ${ }^{1}$, F. Moynier ${ }^{2}$, E. ZINNER ${ }^{3}$
${ }^{1}$ IPAG, CNRS Univ. Grenoble Alpes, IPAG, F38000 Grenoble, France, frod@ujf-grenoble.fr
${ }^{2}$ Institut de Physique du Globe de Paris, moynier@ipgp.fr
${ }^{3}$ Physics Department of Washington Univ., St-Louis, MO

Organic matter in Murchison is made of thousands of compounds varying in mass up to 2000 Da [1]. Their size is in-between the molecules detected in space [2] and macromolecules in meteorites [3]. They have recorded signatures of complexification during the transition from the dense molecular clouds to the disk. We seek signature related to one stage of the meteoritic material evolution.

65 g of Murchison were macerated in Methanol and Toluene (1:2) for 1 week. Extracts were recovered after centrifugation and stored in glass tubes. Mass spectra were acquired with a Thermo LTQ Orbitrap XL coupled with an Electrospay ionization (ESI) source, in the $150-1000 \mathrm{~m} / \mathrm{z}$ range at resolving power $\mathrm{m} / \Delta \mathrm{m}=100000$.

Detected ions are in the 150-750 Da range. The average mass is $\sim 350 \mathrm{Da}$ and the average diversity is 5.1 ions per Da. Each mass detected bears at least NH , the maximal number of heteroatoms is 2 for N and 3 for O . The average H / C is 1.6 regardless of the mass. There is no convergence toward macromolecular-like low saturation. We interpret the periodicity in mass as a repetition of stoichiometric patterns. $\mathrm{CH}_{2}, \mathrm{H}_{2}$ and $\mathrm{C}_{5} \mathrm{H}_{8}$ are the most frequent. Chain rearrangements, cuts and cycling signatures with limited loss of hydrogen are all together consistent with randomized additions of CH_{2} and H_{2} This can occur on grain surface [4]. PDR can provide an efficient C bonds cut mechanism [5].
[1]Schmitt-Kopplin P. et al. (2010) P.N.A.S., 107, 7 pp. 2763-8. [2]Caselli P. and Ceccarelli C. (2012) A.A.Rev., 20, 1 p. 56. [3]Sephton M. a (2002) Nat. Prod. Rep., 19, 3 pp. 292-311. [4]Belloche A. et al. (2014) Science (80-.)., 345, 6204 p. 15841587. [5]Alata I. et al. (2015) A.\&A., 123 pp. 1-9.

