Oxygen fugacity of the oceanic upper mantle as recorded by basalts and peridotites from the Southwest Indian Ridge

S.K. BIRNER^{1,2,*}, E. COTTRELL², J.M. WARREN³, K.A. KELLEY⁴, F.A. DAVIS^{2,5}

¹Dept. of Geol. Sciences, Stanford University, Stanford, CA 94305 USA (*correspondence: skbirner@stanford.edu)

²NMNH, Smithsonian Inst., Washington, DC 20560 USA

³Dept. Geol. Sci, Univ. of Delaware, Newark, DE 19716 USA

⁴ GSO, Univ. of Rhode Island, Narragansett, RI 02882 USA

⁵DEES, Univ. of Minnesota Duluth, Duluth, MN 55812 USA

The oxygen fugacity (fO_2) of the upper mantle controls volatile speciation, phase stability, and the depth of the peridotite solidus, and is thus critical to our understanding of melt production at mid-ocean ridges. Both basalts and peridotites have historically been used as proxies for calculating mantle fO_2 beneath ridges. Studies of peridotite fO_2 suggest a variable and relatively reduced mantle (QFM-2.5 to QFM+0.5, averaging QFM-0.88 (±0.72, n=33)) [1], while studies of basalts suggest a more uniform fO_2 around QFM+0.13 (±0.09, n>100) [2]. This offset is not yet understood, but may result from a sampling bias as peridotites and basalts from the same location have never been assessed for fO_2 . The Oblique Segment of the Southwest Indian Ridge offers a unique opportunity to compare the fO_2 recorded by basalts and peridotites, as both lithologies have been dredged along-axis.

In this study, we calculate the fO_2 of 18 basalt glasses and 14 peridotites from the Oblique Segment. Results show peridotite fO_2s are highly variable and overlap with the ridge array, but also extend beyond it to more oxidized values (QFM-0.96 to QFM+1.45, averaging QFM+0.45 (±0.77)). Basalts, corrected for low-P fractional crystallization, have a more limited range, averaging QFM+0.29 (±0.10). Importantly, we observe no offset between average basalt fO_2 and average peridotite fO_2 in this study. Our data further suggest that basalt fO2s may record homogenization of a mantle that is heterogenous with respect to fO_2 on the sub-segment scale. We also investigate factors that may impact differences between MORB-source fO_2 and recorded fO_2 , including peridotite fertility, source heterogeneity, and projection of peridotite measurements to the P-T conditions of last equilibrium with basalt.

Bryndzia and Wood, Am. Jour. Sci. (1990);
Cottrell and Kelley, EPSL (2011)