Origin of hydrocarbon and nonhydrocarbon gases in Zechstein Main Dolomite reservoir of western part of the Polish Permian Basin

E. BILKIEWICZ¹*, M.J. KOTARBA¹

¹AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland (* correspondence: ebil@agh.edu.pl)

Origin of natural gas from Upper Permian reservoir was established based on the results of molecular and stable C, H and N isotope compositions of nine samples. Six additional samples from Kotarba *et al.* 2000 [1] were also used for interpretation. Hydrocarbon index δ^{13} C [C_{HC} = CH₄/(C₂H₆ + C₃H₈)] varies from 0.64 to 7.0 and stable isotope ratios change as follows: δ^{13} C(C₄) -57.8 to -43.3 %_o, δ^{13} C(C₂H₆) -42.6 to -35.3 %_o, δ^{13} C(C₃H₈) = 30.1 to -27.5 %_o and δ^{2} H(CH₄) -292 to -225 %_o.

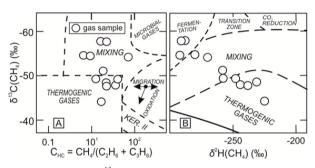


Figure 1. $\delta^{13}C(CH_4)$ versus (A) C_{HC} and (B) $\delta^2H(CH_4)$. Compositional fields after Whiticar [2].

Molecular and stable isotope compositions indicate that hydrocarbon gases were generated during both thermogenic and microbial processes from Type-II kerogen and mixed with different proportions. N₂ concentrations vary from 0.0 to 85.7 % and $\delta^{15}N(N_2)$ range from 7.0 to 14.5 ‰. A slight grow of $\delta^{15}N(N_2)$ values with N₂ concentrations indicates that molecular N originated from thermal decay of organic matter. H₂S and CO₂ concentrations vary from 0.11 to 2.9 % and from 0.00 to 3.0 %, respectively, showing a linear correlation which indicates that they could be produced during TSR, and partially MSR. $\delta^{13}C(CO_2)$ values changed from -9.3 to 2.9 ‰ suggesting that it was also formed during thermal and microbial degradation of kerogen.

The research was financed by NCN grant No. 2013/09/N/ST10/01435 (18.18.140.453/N21).

[1] Kotarba et al. (2000) Prz. Geol. 48, 429-435. [2]
Whiticar (1994) Am. Assoc. Pet. Geo. Memoir 60, 261-283.