Effect of sediment trap by check dam on ¹³⁷Cs transport from forest catchment to downstream

Tomoki Oda¹ Shotaro Yamabe¹ Nobuhito Ohte², Norifumi Hotta³, Izuki Endo¹, Osamu Hashimoto¹, Tanoi Keitaro¹

¹The University of Tokyo Tokyo, 113-8657, Japan ²Kyoto University, Kyoto, 606-8501, Japan ³University of Tsukuba, Tsukuba, 305-8577, Japan

Introduction and Method

In March 2011, a substantial amount of ¹³⁷Cs was released and dispersed in forested areas in Fukushima Prefecture, Japan. Understanding the transport of ¹³⁷Cs from forested areas to downstream is important for evaluating the long-term effects of ¹³⁷Cs on the environment and human health. The objective of this study was to evaluate the effect of a ¹³⁷Cs trap in a check dam on ¹³⁷Cs transport from a forested catchment. This study was conducted at a reservoir-type check dam, which was not full, installed at a forested catchment at Date City, Fukushima Prefecture. We observed spatial variation of the ¹³⁷Cs storage by the check dam.

Result and Discussion

In the reservoir at the dam, the 137 Cs concentration was significantly higher than in forest soil. Moreover, 137 Cs storage in litter at the dam was higher than in the forest floor. The amount of stored 137 Cs was estimated as more than 30 MBq and was 10% to 20% of the annual 137 Cs discharge by suspended solid and dissolved form. These results indicate that a reservoir-type check dam has a role in 137 Cs capture and immobilization, and the effect of the sediment and litter trap on the check dam reservoir is not negligible for estimating 137 Cs discharge from forest to downstream.