Methanogenic growth at extremely low H_2 if Ni is available.

NEUBECK A¹., SCHNÜRER A.²

¹Dept. Geol. Sci., Stockholm University, Sweden ²Dept.Microbiol., Swedish University of Agricultural Sciences, Sweden

Limitation (<8ppb) as well as excess (>150ppb) of available Ni reduces the methanogenic capacity to consume H₂. We have compared the growth of three different methanogenic species in growth medium where Ni is either depleted or in excess. The H_2 threshold in an optimal growth medium was two orders of magnitude lower $(0.7 pH_2)$ than in the medium with Ni limitation or excess $(35 \ pH_2)$. No significant differences in CH4 production could be detected. This implies that Ni stress limits the methanogenic ability to grow in environments with low H₂ concentrations. In terms of survival of microorganisms in the deep subsurface, a very low pH2 would be expected due to the slow alteration rates of H_2 producing minerals at the low temperatures needed to sustain microbial growth. Our study shows that Ni is essential for keeping the pH₂ low, indicating that any natural H2 driven systems has to either supply high Ni concentrations and/or high H₂ concentrations in order to sustain a methanogenic culture. A deep subsurface environment where the Ni is relatively high would allow methanogenic cultures to sustain even with slow releases of H2 from waterrock interactions