Volatiles in primitive plagioclase-hosted melt inclusions

DAVID A. NEAVE1,\footnote{d.neave@mineralogie.uni-hannover.de}, JOHN MACLENNAN2, THORVALDDR THORDARSON3, MARGARET E. HARTLEY4

1Institut für Mineralogie, Leibniz Universität Hannover, Germany
2Department of Earth Sciences, University of Cambridge, UK
3Faculty of Earth Sciences, University of Iceland, Iceland
4School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK

Despite their grouping as volatile species, H\textsubscript{2}O, Li, CO\textsubscript{2}, F, Cl and S often behave very differently during the generation, evolution and eruption of basaltic magmas. Although numerous recent studies have investigated the behaviour of volatiles in olivine-hosted melt inclusions, comparatively few studies have investigated volatiles in plagioclase-hosted melt inclusions. We therefore present SIMS and EPMA analyses of volatiles in matrix glasses and predominantly plagioclase-hosted (~An\textsubscript{90}) naturally quenched melt inclusions from the voluminous (>1–30 km3) 10 ka Grímsvötn tephra series, Iceland. Corresponding major and trace element data have been published recently [1]. High, variable and correlated matrix glass H\textsubscript{2}O and S contents (0.1–0.5 wt.% and 800–1200 ppm respectively) suggest that eruption-related degassing was arrested prematurely owing to quenching in a phreatomagmatic setting. Conversely, comparatively soluble Li, F and Cl show no evidence of having degassed from matrix glasses. Primitive plagioclase-hosted melt inclusions contain more H\textsubscript{2}O and Li than expected from on their trace element compositions (assuming H\textsubscript{2}O/Ce = 180 and Li/Yb = 1.7 in primary melts). We attribute these excesses to the diffusive gain of volatiles after the entraiment of primitive crystals by a H\textsubscript{2}O- and Li-rich carrier melt in the days to months before eruption. While matrix glasses and olivine-hosted melt inclusions record coherent F/Na values of ~13, which are probably representative of the mantle source, primitive plagioclase-hosted inclusions have uniformly higher F/Na values that reach up to ~190. These extremely high F contents (350–1050 ppm) probably reflect inclusion formation by dissolution-reprecipitation; F diffused down activity gradients into Al-rich melt pools around dissolving plagioclase grains that subsequently recrystallised to trap inclusions. In contrast with F, Cl behaved similarly to incompatible trace elements such as K. Initial magmatic H\textsubscript{2}O/Ce and F/Na values of ~180 and ~13 suggest that the mantle under Grímsvötn is depleted in H\textsubscript{2}O and F with respect to the Mid-Atlantic Ridge.