Development of U-236 AMS in MALT –Measuring the soil samples in Fukushima

KAZUHIRO NAKASHOJI¹, HIROYUKI MATSUZAKI², YASUTO MIYAKE³

¹ Department of Nuclear Engineering and Management, University of Tokyo, Hongo,7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan kazuhiro.nksi@gmail.com

² Department of Nuclear Engineering and Management, University of Tokyo, Yayoi,2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan hmatsu@um.u-tokyo.ac.jp

³ Department of Nuclear Engineering and Management, University of Tokyo, Hongo,7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan taizanhokuto62@gmail.com

Natural ²³⁶U ($T_{1/2}=2.342\times10^7$ y) is produced by capturing of thermal neutron, whereas anthropogenic ²³⁶U is generated by nuclear activities: global fallout, spent fuel reprocessing, and nuclear power plant decommissioning. Isotopic ratio of contaminated soil and sea water, for instance, are estimated to be ²³⁶U/²³⁸U~10⁻⁹, therefore ²³⁶U in natural samples are applied as a tracer recently.

There are mainly two reasons for development of 236 U AMS in MALT. First, measuring natural samples: sea water, coral core, and soil. Natural background of 236 U in these samples might be 236 U/ 238 U~10⁻¹². Second, detecting the 236 U assumed to have leaked from Fukushima nuclear power plant.

Aiming at the background level of 10^{-12} , development of ²³⁶U AMS system had started at MALT (Micro Analysis Laboratory, Tandem accelerator). ²³⁶U is extracted as ²³⁶UO from the ion source and exchanged to ²³⁶U⁵⁺ at the terminal. The magnetic rigidity at the injection magnet is 5.07 [MeV^{1/2}amu^{1/2}]. The terminal voltage is 2.4 MV and the magnetic rigidity at the analyzing magnet is 16.4 [MeV^{1/2}amu^{1/2}]. Now ²³⁶U can be measured at ²³⁶U/²³⁸U~10⁻¹⁰ level, there are, however, strong interference from ²³⁵U⁵⁺, which may experiences the abnormal charge exchange. So MALT are planning to attach TOF as a final detector.

In order to measure the soil samples in Fukushima, MALT is focusing on following three projects. (1) Establishing the chemical procedure for soil: eluting and purifying uranium from samples. (2) Measuring ²³⁸U by using ICP-MS. (3) Analysing the beam orbit and understanding the interfering mechanism of ²³⁵U⁵⁺.