Biogeochemical processes in the rhizosphere of *Populus euramericana Dorskamp* involved in the phytosabilization of Cd, Pb and Zn in contaminated technosol with N addition

M. MOTELICA-HEINO^{1*}, B. QASIM², S. BOURGERIE³, D. MORABITO³, A. GAUTHIER⁴

¹Institut des Sciences de la Terre d'Orléans (ISTO), UMR CNRS 7327 Campus Géosciences, Université d'Orléans, France (*correspondence: mikael.motelica@univ-orleans.fr)

²Baghdad University of Technology, Baghdad, Irak ³LBLGC EA 1207, INRA USC1328, Université d'Orléans, France

⁴ Laboratoire de Génie-Civil et géoEnvironnement (LGCgE), Université de Lille1, 59655 Villeneuve d'Ascq Cedex, Lille, France

Introduction

The study of rhizosphere-related processes on mobility, availability and toxicity of trace metals in soils is a major challenge to understand their ecodynamic in the context of phyroremediation or natural attenuation of contaminated soils.

Material and methods

Surface soils were sampled from a metallophyte grassland contaminated with Cd, Pb and Zn located at Mortagne-du-Nord (North France) [1]. A plant growth experiment with poplar woody stem cuttings was conducted with forty-five pots for 35 days with 2 N treatments (NH_4^+ , $NO3^-$) and an untreated control soil. Rhizospheric soil pore water (SPW) pH, dissolved organic carbon (DOC) concentration, metal concentrations in SPW and their uptake by *Populus euramericana Dorskamp* were determined.

Results and discussion

Rhizospheric SPW pH decreased gradually with NH4+ addition and increased with NO3– addition up to one unit. DOC increased with time up to 6 times, the highest increase occurring with NH4+ fertilization. An increase in the metal concentrations in the rhizospheric SPW was observed for $\rm NH_4^+$ addition whereas the opposite was observed for the control soil and $\rm NO_3^-$ fertilization. Metals were mostly accumulated in the rhizosphere and N fertilization increased the accumulation for Zn and Pb while Cd accumulation was enhanced for $\rm NH_4^+$ addition.

Conclusion

Collectively our results suggest metal stabilization by Populus euramericana Dorskamp rhizosphere with NO_3^- fertilization.