Biogeochemical processes in the rhizosphere of *Populus euramericana Dorskamp* involved in the phytosabilization of Cd, Pb and Zn in contaminated technosol with N addition

M. MOTELICA-HEINO1*, B. QASIM2, S. BOURGERIE3, D. MORABITO3, A. GAUTHIER4

1Institut des Sciences de la Terre d’Orléans (ISTO), UMR CNRS 7327 Campus Géosciences, Université d’Orléans, France (*correspondence: mikael.motelica@univ-orleans.fr)
2Baghdad University of Technology, Baghdad, Irak
3LBLGC EA 1207, INRA USC132 8, Université d’Orléans, France
4Laboratoire de Génie-Civil et géoEnvironnement (LGCgE), Université de Lille1, 59655 Villeneuve d’Ascq Cedex, Lille, France

Introduction

The study of rhizosphere-related processes on mobility, availability and toxicity of trace metals in soils is a major challenge to understand their ecodynamic in the context of phytoremediation or natural attenuation of contaminated soils.

Material and methods

Surface soils were sampled from a metallophyte grassland contaminated with Cd, Pb and Zn located at Mortagne-du-Nord (North France) [1]. A plant growth experiment with poplar woody stem cuttings was conducted with forty-five pots for 35 days with 2 N treatments (NH4+, NO3-) and an untreated control soil. Rhizospheric soil pore water (SPW) pH, dissolved organic carbon (DOC) concentration, metal concentrations in SPW and their uptake by *Populus euramericana Dorskamp* were determined.

Results and discussion

Rhizospheric SPW pH decreased gradually with NH4+ addition and increased with NO3– addition up to one unit. DOC increased with time up to 6 times, the highest increase occurring with NH4+ fertilization. An increase in the metal concentrations in the rhizospheric SPW was observed for NH4+ addition whereas the opposite was observed for the control soil and NO3– fertilization. Metals were mostly accumulated in the rhizosphere and N fertilization increased the accumulation for Zn and Pb while Cd accumulation was enhanced for NH4+ addition.

Conclusion

Collectively our results suggest metal stabilization by *Populus euramericana Dorskamp* rhizosphere with NO3– fertilization.