Distribution of aerobic microbial activities in ultra-oligotrophic sediments of the South Pacific Gyre

Yuki Morono1,2*, Takeshi Terada1, Motoo Ito1,2, Tatsuhiro Hoshino1,2, Steven D'Hondt4, and Fumio Inagaki1,2

1 Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Kochi 783-8502, Japan. (*correspondence: morono@jamstec.go.jp) 2 Research and Development Center for Submarine Resources, JAMSTEC, Monobe B200, Nankoku, Kochi 783-8502, Japan. 3 Marine Works Japan Ltd., Oppamahigashi 3-54-1, Yokosuka 237-0063, Japan. 4 Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA

During the Integrated Ocean Drilling Program (IODP) Expedition 329, we observed the presence of aerobic microbial communities and dissolved oxygen throughout the sedimentary sequence from the seafloor to the sediment-basement interface at all sites we explored in the South Pacific Gyre (SPG) [1]. This finding indicates that there is no depth limit to the sedimentary biosphere in the oligotrophic ocean region. However, substrate-specific metabolic activities of these aerobic microbial communities still remain poorly constrained. Using a NanoSIMS isotope imaging, we studied carbon and nitrogen assimilation activities of aerobic microbial cells after the incubation with various 13C- and/or 15N-labeled substrates for 1.5 years. We observed assimilation activities on various heterotrophic conditions (e.g., 13C-labeled glucose, acetate, and pyruvate, and 13C- and 15N-labeled amino acids) at all depths and locations. The uptake of 13C-labeled bicarbonate was found to be rare, but occurred in some incubation conditions. Our results demonstrate that microbial communities widely distributed in the ultra-oligotrophic SPG sedimentary biosphere consists mainly of the aerobic organotrophic microbial ecosystem with small autotrophic populations. The microbes retain their metabolic potentials under the most energetically challenging conditions at least over several tens of millions of years.