What mantle source for Nulliak ultramafic rocks (3.78 Ga, Labrador)? A combined Hf and Nd isotopic approach

$\begin{array}{c} PRECILLIA MORINO^{1}, GUILLAUME CARO^{1}, \\ LAURIE REISBERG^{1} \end{array}$

¹CRPG-CNRS,Université de lorraine,Nancy, France, pmorino@crpg.cnrs-nancy.fr

Coupled 146,147Sm-142,143Nd systematics provide constraints on the timing of the earliest events in Earth history. Positive $\epsilon^{143}Nd_i(1.5\pm0.2)$ and ε¹⁴²Nd(8.6±2 ppm) determined in 3.78±0.09 Ga wellpreserved ultramafic rocks from the Nulliak assemblage of Labrador allow the calculation of a model differentiation age for the Earth's mantle at 4.40±0.05 Ga (assuming a BSE with chondritic Sm/Nd and ϵ^{142} Nd=0). Nulliak ultramafic rocks provide a differentiation age 100 Ma older than those estimated from Akilia tonalites1.The surprising similarity between the positive ¹⁴²Nd signature of Eoarchean ultramafic rocks from Nulliak and that estimated from the 2.7 Ga Theo's flow (Abitibi)² invites discussion of the mechanism for creating positive ε^{142} Nd.

Traditionally, ¹⁴²Nd anomalies were considered to be generated by mantle-crust differentiation processes, but modeling shows that the Nulliak ¹⁴²Nd anomaly could be generated by slow crystallization of a basal magma ocean. In this scenario the Lu-Hf system is expected to be negatively correlated with the Sm-Nd system. This study is aimed at establishing a coherent Lu-Hf dataset on Nulliak ultramafic rocks. First results will be presented during the meeting.

¹ Bennett et al.,2007, ² Debaille et al 2013