Eccentricity Paced CO₂, Climate and Terrestrial Carbon Cycling During Earth's Penultimate Icehouse

ISABEL P. MONTAÑEZ¹, JENNIFER C. MCELWAIN², CHRISTOPHER J. POULSEN³, ROBERT E. TRIPATI⁴, WILLIAM DIMICHELE⁵

¹Dept. of Earth and Planetary Sci., Univ. of California, Davis; ipmontanez@ucdavis.edu

²Earth Institute, School of Biology and Environ. Science, Univ. College Dublin, Ireland; Jennifer.McElwain@ucd.ie

³Dept. of Earth and Environmental Sci., Univ. of Michigan, Ann Arbor, MI 48109, USA; poulsen@umich.edu

⁴Univ. Inst. European De La Mer, France; robert.tripati@gmail.com

⁵Dept. of Paleobiology, Smithsonian Museum of Natural History, Washington, D.C.; DIMICHEL@si.edu

Earth's last icehouse (325 to 260 Myr) was the longest-lived and likely most acute of the past half billion years attributed in large part to the anomalous radiative-forcing created by a 3% lower incident solar luminosity and sustained low atmospheric CO₂ (≤300 ppm). We present an integrated pedogenic carbonate and fossil cuticle reconstruction of atmospheric CO₂ through 16 million years of the late Paleozoic ice age developed using a long-eccentricity cyclothem series in the Illinois Basin (central USA) as well as a subset of samples from the Appalachian (eastern USA) and Donets (Ukraine) basins. Overall, reconstructed CO₂ falls below the modeled threshold (560 ppm) for late Paleozoic glacial inception, well within the range of ice sheet stability during the LPIA (up to 840 ppm). The suborbital resolution reveals CO2 variations between ~200 and 700 ppm with an apparent long eccentricity pacing. Short-term CO₂ fluctuations are superimposed on a 10⁶-yr CO₂ trend that varies in-step with inferred major sea level changes and glacial advances and retreats. Warmest average monthly air temperatures inferred from Δ_{47} of soil-formed carbonates vary with CO2 and indicate interglacial MAATs of between 11 and 30°C.

Comparison of the CO_2 reconstruction with published paleobotanical records for tropical Euramerica indicates a coincidence between CO_2 changes and repeated restructuring of Pangaean tropical forests. Integration of these empirical records with modeled vegetation shifts for the late Paleozoic indicate a more dynamic carbon sequestration history than previously considered and a major role for terrestrial vegetation- CO_2 feedbacks in driving eccentricity scale climate cycles of the late Paleozoic icehouse.