Estimation of paleoclimate changes from ¹⁴C of speleothem from the Ryugashi Cave, central Japan

M. MINAMI¹*, K. HORIKAWA² AND T. NAKAMURA¹

¹ Division for Chronological Research, Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan

² Department of Environment and Chemistry, Faculty of Science, Toyama University, Toyama 930-8555, Japan

(* correspondence: minami@isee.nagoya-u.ac.jp)

Speleothem ¹⁴C has recently emerged as a potentially powerful proxy for hydrology changes in comparison with atmospheric ¹⁴C calibration curve. Some possible causes for the relationship between speleothem ¹⁴C content (or dead carbon fraction: DCF) and karst hydrology have been proposed, such as changes in temperature, precipitation, and drip water flow dynamics. Minami *et al.* [1] investigated seasonal variation in ¹⁴C of drip water in Ryugashi Cave, Shizuoka Prefecture, central Japan. The drip waters were collected at dripping sites having conduit dominated flow paths. The ¹⁴C in the drip waters roughly correlated with rainfall amount around the Ryugashi Cave. This indicates that the increase in rainfall amount could bring the increase in drip rate of drip water, and then the decrease in interaction between solution and karst, and finally the DCF decrease in drip water. Accordingly, the reconstruction of precipitation could be performed using ¹⁴C variation in a speleothem formed by drip water with simple flow dynamics.

We measured $^{14}\mathrm{C}$ of a growing speleothem of ${\sim}7$ cm in length from the Ryugashi Cave. The DCF of 11.5±0.3% on the surface part of the speleothem was matched with the annual mean of DCF of 12.2±2.1% in drip waters at the same site. The calibrated age of the speleothem was calculated by comparing the ¹⁴C with the IntCal13 calibration curve. The DCFcorrected 14C generally matched well with the IntCal ¹⁴C calibration curve, and it suggests that DCF in the speleothem was roughly constant through its growth time. However, some discrepancies were observed around ~1450 cal AD and ~1700 cal AD. The DCFcorrected ¹⁴C in the speleothem was lower than the IntCal ¹⁴C in the two periods, indicating the precipitation decrease around the Ryugashi Cave in the periods. We will examine reconstruction of precipitation in central Japan using the other speleothems from the Ryugashi Cave.

[1] Minami et al. (2015) NIMB 362, 202-209.