Subterranean production of neutrons, ³⁹Ar and ²¹Ne: Rates and uncertainties

WILLIAM F. MCDONOUGH^{1*}, ONDREJ ŠRÁMEK^{2*}, L. Stevens¹, S. Mukhopadhyay³, R. J. Peterson⁴

¹Department of Geology, University of Maryland, College Park, MD 20742, USA

²Department of Geophysics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

³Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA

⁴Department of Physics, University of Colorado

Boulder, Boulder, CO 80309, United States, USA (*corresp: mcdonough@umd.edu,

ondrej.sramek@gmail.com)

An accurate understanding of the subsurface production of radionuclide ³⁹Ar rate is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, ²¹Ne, and ³⁹Ar take advantage of the best available tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, ²¹Ne, and ³⁹Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of $10^7 - 10^{10}$ particles are produced in one kilogram of rock per year (order of $1-10^3$ /kg s), the number of produced neutrons is lower by ~6 orders of magnitude, ²¹Ne production rate drops by an additional factor of 15-20, and another at least one order of magnitude is dropped in production of ³⁹Ar. Our calculation yields a nucleogenic ²¹Ne/⁴He production ratio of (4.6 ± 10^{-1}) $0.6) \times 10^{-8}$ in Continental Crust and $(4.2 \pm 0.5) \times 10^{-8}$ in Oceanic Crust and Depleted Mantle. Calculated ³⁹Ar production rates span a range from 29 ± 9 atoms/kgrock×yr in the K-Th-U-enriched Upper Continental Crust to $(2.6 \pm 0.8) \times 10^{-4}$ atoms/kg-rock×yr in Depleted Upper Mantle.