Delineating sources of bitumenderived acid extractable organics in the Athabasca oil sands region

JASON M. E. AHAD^{1*}, HOOSHANG PAKDEL², PAUL R. GAMMON³, BERNHARD MAYER⁴, MARTINE M. SAVARD¹, KERRY M. PERU⁵ AND JOHN V. HEADLEY⁵

¹Geological Survey of Canada, Natural Resources Canada, Québec, QC, Canada; *jason.ahad@canada.ca

² INRS Eau Terre Environnement, Québec, QC, Canada

³ Geological Survey of Canada, Natural Resources Canada, Ottawa, ON, Canada

⁴ Dept. Geoscience, Univ. Calgary, Calgary, AB, Canada

⁵Water Science and Technology Directorate, Environment Canada, Saskatoon, SK, Canada

Naphthenic acids (NAs) found naturally in bitumen that become concentrated in oil sands process-affected waters (OSPW) pose a threat to aquatic ecosystems by seepage from tailings ponds. Previous research combined high resolution Orbitrap mass spectrometry with intramolecular carbon isotope analysis ($\delta^{13}C_{pyr}$) to characterise and quantify the acid extractable organics (AEOs) fraction containing NAs in groundwater near a major oil sands tailings pond [1]. Here, we build upon this work through further development and application of these techniques at a different study site. As observed previously, OSPW was characterised by an elevated $\delta^{13}C_{pyr}$ value and high proportions of O_2 and O_2S species classes, and $\delta^{13}C_{pyr}$ values in groundwater reflected mixing between OSPW and non-bitumen containing AEOs. To distinguish between different sources of bitumen-derived AEOs (i.e., natural versus mining-related), several additional geochemical and isotopic parameters were employed; the ratio of even over odd Ox species classes and sulphur isotope analysis (δ^{34} S) of AEOs. While the potential for δ^{3} to distinguish sources thus far appears limited, higher ratios of even over odd Ox species classes in bitumenrich McMurray Formation groundwater compared to OSPW indicates a possible new tool to discriminate between different bitumen-derived AEOs in the Athabasca oil sands region.

[1] Ahad et al. (2013) Env. Sci. Technol. 47, 5023–5030.

20