²²²Rn emanations from selected metamict minerals

D. MALCZEWSKI^{1*}, M. DZIUROWICZ¹

¹Faculty of Earth Sciences, University of Silesia, Sosnowiec 41-200, Poland (*correspondence: dariusz.malczewski@us.edu.pl)

Radiation Damage. Emanation Coefficient of ²²²Rn

Metamict minerals contain uranium and thorium that degrade the crystal structure of the minerals mainly by α -decay events. This presentation reports the relantionship between the results of ²²²Rn emanations and absorbed α -dose for a representative group of metamict oxides, phosphates and silicates [1]. The radon isotope ²²²Rn ($T_{1/2}$ = 3.64 d) belongs to the ²³⁸U decay series, and occurs as an inert gas that is detectible in U bearing mineral phases. The α -decay of 226 Ra (E_a = 4.77 MeV) is accompanied by recoil of the 222 Rn nucleus with an energy of 86 keV. Emanation coefficients of 222 Rn (e_{222} , expressed in percentage) measure the number of radon atoms released per the number of radon atoms produced within the ²³⁸U decay series for a given mineral. This ratio provides a quantitative measure of the quality of the mineral's internal structure. Results

The ²²²Rn emanation coefficients for the presented minerals vary widely from 5 x 10⁻⁵% (uraninite) to 2.5% (turkestanite). Emanation coefficients for ²²²Rn generally decrease with increasing total absorbed α -dose, D_T (Fig. 1).

Figure 1: ²²²Rn emanation coefficients (e_{222}) for metamict minerals vs. total absorbed α -dose.

Figure 1 also shows that ^{222}Rn emanations produce visible peaks for metamict phases having considerable concentrations of ^{232}Th in excess of 2.8 wt.% and $D_{232} > 26 \text{ x } 10^{15} \, \alpha\text{-decay mg}^{-1}$ (TUR, FMU, BRA, MPE, and THO). Excluding these observations, the relationship between e_{222} and total dose (D_T) values can be fitted by an exponential function. Metamict oxides showed the lowest ^{222}Rn emanation coefficients for the highest absorbed $\alpha\text{-}$ dose.

[1] Malczewski & Dziurowicz (2015) *Am. Mineral.* **100,** 1378-1385.