Chronology and geochemistry of Zhuqing Fe-Ti-V Oxide Deposits, Sichuan Province, SW China

WEI LIU ${ }^{1.2}$, XIAOYONG YANG ${ }^{1.2}$, ZHIMING SUN 2
${ }^{1}$ CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026,
China(*correspondence:
liuwei12@mail.ustc.edu.cn)
2Chengdu Center, China Geological Survey, Chengdu, 610081, China

The Zhuqing V-Ti magnetite deposit is located in the cross between the Hongmenchang fault and Huangchangwan fault, which belongs to the Anding River- Yuanmou fault belt. This ore bodies are stratiform-like, lenticular and veined, mainly occurred in the gabbro [1]. Zircon ICP-MS U-Pb dating results for the gabbro indicate that this pluton was emplaced in the Meso- Proterozoic (ca. 1464 ± 83 Ma; MSWD $=1.9$). This new age is distinguished from those of the Late Permian (ca. 260 Ma) large scale deposits such as the Panzhihua, Baima, Taihe and Hongge deposits. According to the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and TiO_{2} contents, the ores are divided into two types, i.e., $\mathrm{Fe}-\mathrm{Ti}$ rich and $\mathrm{Fe}-\mathrm{Ti}$ poor types. The $\mathrm{Fe}-\mathrm{Ti}$ rich type shows ~ 43 wt. $\% \mathrm{Fe}_{2} \mathrm{O}_{3}$ and ~ 9 wt. $\% \mathrm{TiO}_{2}$, whereas the Fe -Ti poor type has ~ 27 wt. $\% \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\sim 6 \mathrm{wt} . \% \mathrm{TiO}_{2}$. In addition, TiO_{2} and MgO show positive correlation with $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

The ore- rich samples contain low $\mathrm{Rb}(\sim 7.55$ $\mathrm{ppm}), \mathrm{Sr}(\sim 21.0 \mathrm{ppm})$ and total REE ($\sim 84.73 \mathrm{ppm}$) with pronouncedly negative Eu anomalies ($\delta \mathrm{Eu} \sim$ 0.78), whereas the ore- barren samples have relatively high Rb ($\sim 126.2 \mathrm{ppm}$), Sr ($\sim 38.9 \mathrm{ppm}$), and REE ($\sim 161.28 \mathrm{ppm}$) with obviously positive Eu anomalies ($\delta \mathrm{Eu} \sim 1.16$)

The age of Zhuqing Fe-Ti-V Oxide Deposits in western margin Yangtze Block was documented as Mesoproterozoic, its genesis may be related to development of the Panxi rift. The distinguished geochemical compositions in the ore- rich and orebarren samples, suggest they were possibly generated by two different magmatic events.
[1] Chen C J. et al. (2012). Acta Geologica Sichuan $\square 32 \square$ Supplement $\square \square 73 \sim 77$

