Cosmogenic Effects on Cr Isotopic Composition of Iron Meteorites

JIA LIU1, LIPING QIN1, JIUXING XIA1, RICHARD, W. CARLSON2, INGO LEYA3,
1 CAS Key Laboratory of crust-mantle materials and Environment University of Science and Technology of China, 96 Jinzhai RD., Hefei, Anhui, 230026, China (liuj08@mail.ustc.edu.cn).
2 DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA
3 Space Research and Planetology, University of Berne, Sidlerstrasse 5, 3012 Berne, Switzerland

53Mn-53Cr short-lived chronometer ($t_{1/2}=3.7$ Myr) is a powerful tool for high resolution chronological studies of the early Solar System events occurred in the very first 10 Ma. However, cosmogenic effects, induced by spallation and thermal/epithermal neutron capture processes, could hamper the correct determination of radiogenic contribution to 53Cr, therefore influence the accuracy of 53Mn-53Cr chronometry, especially for samples with high Fe/Cr, Ni/Cr ratios and long exposure ages ([1,2]). Metal and olivine phases in meteorites that are often used for the determination of Mn-Cr age, have high Fe and/or Ni contents and could be vulnerable to cosmogenic effects. Thus it is necessary to examine the comogenic Cr isotopic signature in meteorites, and to find a proper method to correct for such effects on Cr isotopic composition in order to obtain meaningful Mn-Cr ages.

Iron meteorites are ideal samples for investigating cosmogenic effects on Cr isotopic composition because of their high Fe/Cr, Ni/Cr ratios and relatively long exposure ages. In this study, we analyzed 25 iron meteorite samples from 9 chemical groups using a Thermo Finnigan Triton multicollector thermal ionization mass spectrometer at DTM. The samples display large coupled variations in ε^{53}Cr and ε^{54}Cr (up to ~250 for ε^{53}Cr and up to ~1000 for ε^{54}Cr) with a ratio of approximately 1:3.9. This ratio is similar to that determined through three pieces of Carbo meteorites in [3] and is consistent with our modeling results ($\sim1:3.4$). We found that this correlation is very robust and is independent of the chemical composition (different Fe/Ni ratio) of the meteorites. Therefore, we can use this correlation to correct for cosmogenic effects on ε^{54}Cr, because the pre-exposure ε^{54}Cr (anomalies) are often known and the magnitude is small compared to the variation generated by cosmogenic effects.