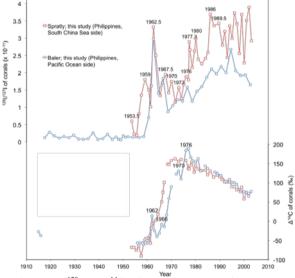
Differences of coral ¹²⁹I and ¹⁴C as nuclear bomb indicators

ANGEL T. BAUTISTA VII*^{1,2}, HIROYOUKI MATSUZAKI¹, FERNANDO P. SIRINGAN³


¹The University of Tokyo, Japan (*correspondence: atbautistavii@gmail.com

²Philippine Nuclear Research Institute – Department of Science and Tecnology, Philippines

³Marine Science Institute, University of the Philippines Diliman, Philippines

Iodine-129 and Carbon-14 are radionuclides that were introduced in massive amounts during the nuclear bomb testing era of 1950s and 1960s. Here we show and compare the ¹²⁹I and ¹⁴C records of two coral cores taken from Pacific Ocean (PO) and the South China Sea (SCS) sides of the Philippines.

Results show that ¹²⁹I in both coral cores display prominent signals within the same year of the nuclear tests, most notably in the year 1962. ¹⁴C bomb peaks, on the other hand, were not concurrent with the SCS record increasing around 1961-1969 and the PO record rising 3 years later. This demonstrates that ¹²⁹I may prove to be a better coral age and event marker than ¹⁴C. Moreover, the rates of increase and decrease were both quicker for ¹²⁹I than ¹⁴C. This difference is majorly attributed to the longer atmospheric residence time and the easier ocean-to-atmosphere exchange of ¹⁴C, which is presnted here through a in a simple box model.

Figure 1: ¹²⁹I and ¹⁴C of two coral cores from the Philippines