A quantitative phase map of nanometeric Iron(III) oxide

SEUNGYEOL LEE AND HUIFANG XU^*

NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin – Madison, Madison, Wisconsin 53706 (*correspondence: hfxu@geology.wisc.edu)

There is great interest in nanosized iron oxides, because of their technological application and prospective utilization due to its magnetic property. Among iron oxides, ε -Fe₂O₃ is considered as a remarkable phase due to a giant coercive field at room temperature, coupled magneto-electric features, a significant ferromagnetic resonance that is a distinctive characteristic in any other metal oxides [1, 2]. We present the first quantitative phase map for ε -Fe₂O₃ via γ - ε - α pathway, based on X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Our recent study shows the ε -Fe₂O₃ nano-minerals occur in oxidized basalt.

The nanosized Fe₂O₃ polymorphs are synthesized by a thermal decomposition method between 800 °C to 1100 °C [3]. The method increases the thermal stability of ϵ -Fe₂O₃ through SiO₂ matrix [3]. The polymorphous transformations of Fe2O3 are identified by XRD patterns between 850°C and 1000°C. The individual nanoparticles are examined using HRTEM to study their structure, size, and crystal interfaces. The cubic crystal structure of γ -Fe₂O₃ with the average crystal size of ~5 nm is thermally unstable at elevated temperature. The $\gamma\text{-}Fe_2O_3$ to $\epsilon\text{-}Fe_2O_3$ phase transition takes place once the γ -Fe₂O₃ nanoparticles reach a certain critical size between ~10 nm at 1000 °C and ~13 nm at 850 °C. The orthorhombic crystal structure of ϵ -Fe₂O₃ are typically ~50 nm and ranges from ~10 nm to ~ 200 nm. The shape of ε -Fe₂O₃ is elongated along *a*-axis with combinations of sphenoid, pinacoid and pedion forms. The $\epsilon\text{-}\text{Fe}_2\text{O}_3$ nanoparticles have (110) or (-110) twinning with composition plans of {130} and (100) due to pseudohexagonal symmetry of the crystal structure. The critical size of $\epsilon\mbox{-}Fe_2O_3$ to $\alpha\mbox{-}Fe_2O_3$ phase conversion is approximately between ~150 nm at 1000 °C and ~100 nm at 850 °C in amorpous silica matrix. The rhombohedrally centered hexagonal structure of α-Fe₂O₃ is most stable phase of all three polymorphs of a-Fe2O3. HRTEM images show crystal interfaces of ϵ -Fe₂O₃ and α -Fe₂O₃ along *c*-axis. It is proposed that the hexagonal packing of ϵ -Fe₂O₃ (001) surface could serve as the substrate / interface for α -Fe₂O₃.

[1] Gich *et al.* (2005) J. Appl. Phys. 98, 044703. [2]
Tucek *et al.* (2010) Chem. Mater. 22, 6483-6505. [3]
Kelm & Mader (2005) Anorg. Allg. Chem. 631, 2383-2389.