Inorganic and organic sulfur in Murchison and other chondrites carry isotope anomalies

J. LABIDI^{1,} J. FARQUHAR^{2,} C.M.O. ALEXANDER³, G. $CODY^1$

¹Geophysical Laboratory, Carnegie Institution, Washington DC.

²Geology Department and ESSIC, University of Maryland,

³Department of Terrestrial Magnetism, Carnegie Institution, Washington DC

We have investigated the quadruple isotopic composition of organic and inorganic sulfur-bearing phases from Murchison and 12 others carbonaceous chondrites of CM type. We have also extraced sulfur out of 3 splits of insoluble organic matter (IOM) from the Murchison chondrite (from the USNM).

On average for CMs, we recover a bulk S content of 2.11 \pm 0.39 wt.% S (1 σ). The recovered sulfate, S⁰ and sulfide contents represent 25 \pm 12%, 10 \pm 7% and 65 \pm 15% of the bulk S, respectively (all 1 σ). We recover a variable S content in the Murchison IOM, with a S content between 3100 and 6150 ppm S (\pm 300 ppm S).

We report a range of Δ^{33} S and Δ^{36} S values in CMs significantly larger than previously observed. In the inorganic fraction, the largest variations are captured by S⁰, with Δ^{33} S values ranging between - 0.104±0.012‰ and +0.256±0.018‰ (2 σ). In the organic fraction, the low amount of extracted S allowed the determination of Δ^{33} S with a larger uncertainty. However, we observe a clear mass-independent signature in one of the three splits, with a Δ^{33} S value of +0.74±0.08‰. The two other splits have a Δ^{33} S value indistinguishable from the Canyon Diablo Troilite standard at a 0.02‰ level.

We suggest that these mass independent S isotopic compositions record H_2S photodissociation at the surface of the solar nebula. Mass independent $\Delta^{33}S$ values in the Murchison IOM has implication for the origin of S-bearing organics, as it links them with H_2S photodissociation. On the basis of experimental litterature we suggest that the photoprocessing of H_2S , during ice transport, could have contributed to the presence of elemental S and S-bearing organics observed in the meteorites.