Origin of high-alumina and lowmagnesia mantle eclogites from the Catoca pipe (N.-E. Angola)

 $\begin{array}{c} N.M.\,Korolev^{1*},L.P.\,Nikitina^{1,2},E.O.\\ Dubinina^3,V.N.\,Zinchenko^4,A.E.\,Melnik^{5,1}\\ &\quad And\,F.\,Jo\~{A}o^4 \end{array}$

¹Insitute of Precambrian Geology and Geochronology RAS, St. Petersburg, Russia (*correspondence: n.m.korolev@ipgg.ru)

² Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia

³Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow, Russia

⁴ Geological Department of SM Catoca, Angola

⁵ National Mineral Resources University (Mining University), St. Petersburg, Russia

The first petrography and mineralogy results of the mantle eclogites from the Catoca pipe were published in the article [1]. High-alumina (hi-Al₂O₃) eclogites (6 samples) consist of high-Na omphacite (Jd 51-67) and garnet (Prp30-33 Alm28-29 Grs37-41). There are small quantities of kyanite in each sample (up to 15 vol.%). Low-magnesian (lo-MgO) eclogites (9 samples) are bimineralic, the composition of garnet: Prp 35-53 Alm 28-45 Grs 16-28; the composition of omphacite: (Jd 32-57).

The isotopic and geochemical data support the subduction origin of the eclogites from the Catoca pipe.

 REE_N patterns, Y, Zr, Li contents and Zr/Sm, Zr/Hf, La/Sm ratios of reconstructed whole rock of hi-Al₂O₃ eclogites reveal the greatest similarity with ophiolitic gabbro and modern oceanic gabbro. Weak Eu peak together with an increased concentration of Sr in garnets are also indicative of plagioclase-bearing protolith.

REE_N patterns, Y, Zr, Li contents, Zr/Sm, Zr/Hf, La/Sm ratios and depleted LREE_N of reconstructed whole rock of lo-MgO eclogites may indicate that these eclogites were formed as a product of a N-MORB restite transformation. The geochemical modeling results of melting at T 1100-1200°C and P 30-40 kbar (partition coefficients from [2]) support the introduced assumption.

The oxygen isotope composition of rock-forming minerals of lo-MgO eclogites ($\delta^{18}O(cpx)$ 6.2-7.4, $\delta^{18}O(grt)$ 6.2-7.1) are also consistent with the assumption.

The reported study was funded by RFBR according to the research project No. 16-35-00321.

- [1] Nikitina *et al.* (2014) Precambrian Res **249**, 13-32.
- [2] Green et al. (2000) Lithos 53, 165-187.