The evolution of the solar nebula as recorded by hiboniterich CAIs

L. KÖÖP^{1,2,4}, A. M. DAVIS¹⁻⁴*, P.R. HECK^{1,2,4}, N. T. KITA⁵, D. NAKASHIMA^{5,6}, T. J. TENNER⁵, C. PARK^{7,8}, A. N. KROT⁷, K. NAGASHIMA⁷

¹Dept. of the Geophysical Sciences, ²Chicago Ctr. for Cosmochem., ³Enrico Fermi Inst., Univ. of Chicago, Chicago, IL, ⁴R.A. Pritzker Ctr., Field Mus. Nat. Hist., Chicago, IL, ⁵Dept. of Geoscience, Univ. of Wisconsin, Madison, WI, ⁶Tohoku Univ., Sendai, Japan ⁷HIGP/SOEST, Univ. of Hawai'i at Mānoa, Honolulu, HI, ⁸Korea Polar Res. Inst., Incheon, Korea. *E-mail: adavis@uchicago.edu

We studied O, Ca, Ti and ²⁶Al-²⁶Mg isotopic systematics of hibonite-rich Ca-, Al-rich inclusions (CAIs) from the Murchison (CM) meteorite. These CAIs can be divided into three isotopic populations: (1) PLACs (platy hibonite crystals) which are ²⁶Aldepleted, have δ^{48} Ca from -61 to +81‰, δ^{50} Ti from -71 to +171‰, and Δ^{17} O from -28‰ (solar) to -17‰. PLACs with solar Δ^{17} O lack large anomalies; with increase of Δ^{17} O, the range of Ca- and Ti-isotope anomalies increases. (2) CAIs with mass-fractionated O, Ca, Ti, or Mg have inferred initial ²⁶Al/²⁷Al ratios $((^{26}Al/^{27}Al)_0)$ of $\sim (0-5) \times 10^{-5}$; those with low $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ have $\delta^{48}\text{Ca}$ and $\delta^{50}\text{Ti}$ from -14 and +43% and variable Δ^{17} O. CAIs with evidence for 26 Al incorporation have $\Delta^{17}O$ of ~-23‰ and have no resolved anomalies in Ca and Ti. (3) Spinel-hibonite inclusions (SHIBs) have uniform Δ^{17} O of ~-23%. Internal isochrons for 8 SHIBs show $({}^{26}Al/{}^{27}Al)_0 =$ (2.5-5)×10⁻⁵. 5 SHIBs studied for Ca and Ti have anomalies of <5%.

If ²⁶Al-depletions in hibonite-rich CAIs indicate formation before arrival of fresh ²⁶Al, then they suggest that carriers of ⁵⁰Ti and ⁴⁸Ca anomalies were initially heterogeneously distributed in the ²⁶Al-poor, early solar nebula. Both isotopically anomalous (in O, Ca and Ti) and solar (in O, Ca and Ti) PLACs formed in the ²⁶Al-poor nebula. Data for fractionated CAIs suggest that prior to arrival of ²⁶Al, the CAI formation region evolved towards a nonsolar, yet uniform Δ^{17} O of ~-23‰ and that anomalies in Ca and Ti were diluted to $\leq \sim 5\%$. SHIBs formed in a similarly homogeneous reservoir. The variable (²⁶Al/²⁷Al)₀ in SHIBs could indicate formation during admixture of ²⁶Al or prolonged formation/processing after its significant decay.

The data suggest that highly fractionated CAIs were able to form prior to and during admixture of ²⁶Al. PLACs (often sizable single crystals or aggregates of chemically uniform hibonite) only formed in the ²⁶Al-poor nebula, while the more finegrained and highly chemically zoned hibonites found in SHIBs formed in the more evolved nebula.