Thermodynamic calculation of post-spinel phase boundary of Mg₂SiO₄

H. KOJITANI^{1*}, T. INOUE², M. AKAOGI³

¹Gakushuin Univ., Tokyo 171-8588, Japan (*correspondence:

hiroshi.kojitani@gakushuin.ac.jp)

²GRC, Ehime Univ., Matsuyama 790-8577, Japan

(inoue@sci.ehime-u.ac.jp)

³Gakushuin Univ., Tokyo 171-8588, Japan

(masaki.akaogi@gakushuin.ac.jp)

The post-spinel boundary of Mg_2SiO_4 has been investigated by many researchers. However, obtained boundaries are different among the researchers and have not been well constrained yet. In this study, we redetermined the post-spinel transition enthalpy at 298 K, which greatly affects a thermodynamically calculated phase transition pressure, by precisely measuring drop-solution enthalpies of MgSiO₃ bridgmanite, Mg_2SiO_4 ringwoodite and MgO. The obtained post-spinel transition enthalpy was applied to the thermodynamic calculation of the post-spinel boundary together with recently reported entropies, heat capacities and thermoelastic data.

 Mg_2SiO_4 ringwoodite and $MgSiO_3$ bridgmanite used for calorimetry were synthesized using a Kawaitype multi-anvil high-pressure apparatus at GRC. The drop-solution enthalpy measurements were performed using a Calvet-type twin microcalorimeter. Samples of about 3 mg were dropped from outside of the calorimeter at room temperature into the 2PbO·B₂O₃ solvent placed in the calorimeter kept at 978 K. The solvent was stirred by Ar gas bubbles to hasten dissolution of the dropped samples.

Mg₂SiO₄ Drop-solution enthalpies of ringwoodite, MgSiO₃ bridgmanite and MgO were determined to be 128.75±1.99, 16.47±0.52 and 33.74±0.99 kJ/mol, respectively. From these enthalpy values, the post-spinel transition enthalpy at 298 K was obtained as 78.54±2.28 kJ/mol. Thermodynamic calculation of the post-spinel boundary suggested that phase transition pressure is lower than that correspond to the average depth for the 660-km seismic discontinuity (~23.5 GPa), which is estimated from PREM and ak135-f, and that most likely Clapeyron slope is about -1 MPa/K. Since the hydrous condition makes the post-spinel transition pressure higher and the Clapeyron slope steeper, water content in the mantle transition zone would give a plausible explanation for observed 30-40 km depressions of the "660-km" seismic discontinuity.