Investigation of the effect of Mg²⁺ incorporation on the structure of CaCO₃ clusters by the anharmonic downward distortion following method

J. KAWANO^{1*}, S. MAEDA² AND T. NAGAI¹

¹Department of Earth and Planetary Sciences, Faculty of Science, Hokkaido Univ., N10 W8 Kita-ku, Sapporo, 060-0810, Japan (*j-

kawano@mail.sci.hokudai.ac.jp) ² Department of Chemistry, Faculty of Science, Hokkaido Univ., N10 W8 Kita-ku Sapporo, 060-0810, Japan

The formation process of CaCO₃ polymorphs from aqueous solutions has attracted research for more than a century. Recently, a crystallization pathway through non-classical mechanisms has been put forward as a possible process for early-stage CaCO₃ formation [1]. Molecular dynamics simulation studies with accurate force fields have succeeded to provide to a new picture of how CaCO₃ growth occurs [2], however this technique cannot be adopted to systems including Mg^{2+} , which is considered to have an influence on CaCO₃ polymorph selection, because a Mg^{2+} ion in aqueous solution cannot be released from a tight hydration shell within the time scale of computer simulations.

Therefore in the present study, to investigate the effect of Mg²⁺ incorporation on CaCO₃ nucleation, the stable structures of anhydrous additive-free and Mg-containing CaCO₃ clusters are derived by using the anharmonic downward distortion following (ADDF) method, which is recently developed to make an automated global exploration for reaction pathways on the quantum chemical potential energy [3-5]. As a result, in the case of the additive-free CaCO₃ system, structures similar to calcite appear when four CaCO₃ units aggregate into the cluster, while the structure of the Mg-containing CaCO₃ tetramer resembles the aragonite structure in the way that CO_3 ions are stacked [6]. These results indicate that Mg^{2+} can play a key role in aragonite formation in the early stages of CaCO3 formation, not only by inhibiting the growth of calcite but also by directly promoting aragonite nucleation.

Gebauer et al. (2008) Science, 322, 1819. [2]
Demichelis et al. (2011) Nat. Commun., 2, 590. [3]
Ohno and Maeda, (2004) Chem. Phys. Lett., 384, 277.
Maeda and Ohno, (2005) J. Phys. Chem. A, 109, 5742. [5]
Ohno and Maeda, (2006) J. Phys. Chem. A, 110, 8933. [6]
Kawano et al. (2016) Phys. Chem. Chem. Phys., 18, 2690.