Impacts in the lunar highlands: Shocked zircon from Apollo 16

K. H. JOY ${ }^{1}$, J. F. SNAPE ${ }^{2}$, A. A. NEMCHIN ${ }^{2,3}$, M. J. Whitehouse ${ }^{2}$, V. Vishnyakov ${ }^{4}$.
${ }^{1}$ SEAES, University of Manchester, Manchester, UK. (katherine.joy@manchester.ac.uk)
2Dept. of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden.
3Dept. of Applied Geology, Curtin University, Perth, Australia.
${ }^{4}$ School of Computing and Engineering, University of Huddersfield, Huddersfield, UK.

Science Context: Zircon grains in lunar samples typically preserve ancient $>3.8 \mathrm{Ga}$ ages associated either with ancient KREEP-driven magmatic episodes or formation / reset during impact cratering / basinforming events [1]. We report the first age dates of zircon collected from the Apollo 16 landing site, shedding light on geological processes in the central nearside highlands of the Moon [2].

Sample 65745 is a sub-mature $\left(\mathrm{I}_{s} / \mathrm{FeO}\right.$ 27) regolith breccia collected from the Cayley Plains deposit at Station 5 (Stone Mountain) at the Apollo 16 landing site. We located two zircon-bearing clasts in thin section 65745,7.

Methods: The section was imaged in BSE and CL, and was then gold coated and analysed using the CAMECA IMS 1280 ion microprobe at the NordSIMS facility in Sweden [3].

Results: Clast 1 has a felsic composition: Kfeldspar and Si mineral intergrowth with troilite and two large ($50-150 \mu \mathrm{~m}$) zircon grains. Both zircon grains have been shocked, and contain decomposed regions where the zircon has broken down to a porous granular texture, indicative of shock metamorphism to $>70 \mathrm{GPa}$ [4]. The Clast 1 zircon has a minimum formation $/$ reset ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age of 4125 Ma ranging to 3879 Ma in the mineral core. The decomposed areas record younger resetting events from 3663 Ma to 3342 Ma .

Clast 2 is a devitrified KREEP-rich impact melt glass with a clast of plagioclase $\left(\mathrm{An}_{88-91}\right)$ and a $50 \mu \mathrm{~m}$ zircon. The Clast 2 zircon yields dates of 3986 Ma to 3894 Ma .

Implications: The zircon grains have had a variable resetting history. The oldest $\sim 4.15 \mathrm{Ga}$ ages are similar to KREEP-rich high-alkali suite samples [1]. The $\sim 3.9 \mathrm{Ga}$ ages are consistent with resetting by the Imbrium basin-forming event at 3926 Ga [3], which emplaced the Cayley Plains deposit. The younger 3.7-3.4 Ga events, consistent with Apollo 16 argon-isotope impact records [5], record post-basinformation cratering events in the central highlands.
[1] Meyer et al. (1996) MAPS 3, 370-387. [2] Norman and Nemchin (2014) EPSL 288, 387-398. [3] Snape et al. (2016) GCA 174, 13-29. [4] Timms et al. (2012) MAPS 47, 120-141. [5] Fernandes et al. (2013) MAPS 48, 241-269.

